Abstract:
The present disclosure relates to a lighting fixture that includes a driver module and at least one other module that provides a lighting fixture function, such as a sensor function, lighting network communication function, gateway function, and the like. The driver module communicates with the other modules in a master/slave scheme over a communication bus. The driver module is configured as a slave communication device, and the other modules are configured as master communication devices. As such, the other modules may initiate communications with the driver to send information to or retrieve information from the driver module.
Abstract:
A lighting fixture includes a solid-state light source, communications circuitry, and control circuitry coupled to the communications circuitry and the solid-state light source. The control circuitry is configured to receive a message from a neighboring device via the communications circuitry, the message indicating the detection of an occupancy event by the neighboring device. Further, the control circuitry is configured to adjust a light output provided by the solid-state light source based on a neighbor ranking of the neighboring device, wherein the neighbor ranking indicates a number of intermediate devices located between the lighting fixture and the neighboring device.
Abstract:
A handheld device having a communication interface configured to wirelessly communicate with a plurality of lighting fixtures and control circuitry is described. In one embodiment, the circuitry is configured to effect selection of a first lighting fixture in a first group of lighting fixtures via the communication interface; identify the first group of lighting fixtures based on information from the first lighting fixture; determine new settings for the first group of lighting fixtures; and send the new settings to each of the first group of lighting fixtures via the communication interface, wherein the first group of lighting fixtures includes a defined plurality of lighting fixtures that are associated to operate in a coordinated manner.
Abstract:
A portable device comprising a light detector, a correction calculator and a correction output element. In some aspects, (1) correction (and/or adjustment) is of color point, lumen output, or both, (2) the portable device is a smart phone or a computing device, and/or (3) a wireless correction signal is transmitted and received. Lighting system, comprising a light source, and a portable device that comprises a light detector, a correction calculator, and a correction output element. Lighting device comprising a light source and a receiver. A method comprising detecting light with a light detector of a portable device, generating a correction signal, and outputting the correction signal with a correction output element of the portable device. Method comprising placing a portable device in a calibration location, illuminating a lighting device, and detecting light emitted from the lighting device with a light detector of the portable device that has a correction calculator.
Abstract:
Control of lighting fixtures in a lighting network may be distributed among the lighting fixtures. The lighting fixtures may be broken into groups that are associated with different lighting zones. At least some of the lighting fixtures will have or be associated with one or more sensors. Within the overall lighting network or the various lighting zones, the lighting fixtures may share sensor data from their sensors. Each lighting fixture may process sensor data provided by its own sensor, a remote standalone sensor, or lighting fixture, and process the sensor data according to the lighting fixture's own internal logic to control operation of the lighting fixture. The lighting fixtures may also receive control input from other lighting fixtures, control nodes, light switches, and commissioning tools. The control input may be processed along with the sensor data according to the internal logic to further enhance control of the lighting fixture.
Abstract:
Control of lighting fixtures in a lighting network may be distributed among the lighting fixtures. The lighting fixtures may be broken into groups that are associated with different lighting zones. At least some of the lighting fixtures will have or be associated with one or more sensors. Within the overall lighting network or the various lighting zones, the lighting fixtures may share sensor data from their sensors. Each lighting fixture may process sensor data provided by its own sensor, a remote standalone sensor, or lighting fixture, and process the sensor data according to the lighting fixture's own internal logic to control operation of the lighting fixture. The lighting fixtures may also receive control input from other lighting fixtures, control nodes, light switches, and commissioning tools. The control input may be processed along with the sensor data according to the internal logic to further enhance control of the lighting fixture.
Abstract:
A handheld device having a communication interface configured to wirelessly communicate with a plurality of lighting fixtures and control circuitry is described. In one embodiment, the circuitry is configured to effect selection of a first lighting fixture in a first group of lighting fixtures via the communication interface; identify the first group of lighting fixtures based on information from the first lighting fixture; determine new settings for the first group of lighting fixtures; and send the new settings to each of the first group of lighting fixtures via the communication interface, wherein the first group of lighting fixtures includes a defined plurality of lighting fixtures that are associated to operate in a coordinated manner.
Abstract:
A handheld device having a light source, a communication interface, and control circuitry that is capable of interacting with a lighting fixture.
Abstract:
A lighting fixture employing a solid-state light source and an ambient light sensor is disclosed. The solid-state light source is placed within a light source housing and configured to emit light through a lens assembly that covers an opening into a mixing chamber provided within the light source housing. In one embodiment, the ambient light sensor is located within mixing chamber with the solid-state light source. In another embodiment, the ambient light sensor is located outside of the mixing chamber. In either embodiment, the ambient light sensor may be recessed within a waveguide, which aides in controlling the sensor distribution beam for the ambient light sensor. The sensor distribution beam essentially defines an area from which light reflected off of a task surface is accurately monitored via the ambient light sensor. The direction of the sensor distribution beam and the light emitted from the ambient light sensor may generally coincide.
Abstract:
An optical waveguide includes a coupling optic and a waveguide body. According to one embodiment, the body includes a first curved surface that extends between an input surface and an end surface and a second surface opposite the first surface. The input surface has a first thickness disposed between the first and second surfaces and the end surface has a second thickness disposed between the first and second surfaces less than the first thickness.