Abstract:
Systems and methods for implementing regeneration of an aftertreatment component using exhaust gas recirculation is described. According to various embodiments, an engine system comprises an engine, a turbocharger, a fluid control valve, and a lean NOx catalyst. The engine has a first set cylinders fluidly coupled to an intake manifold and a second set of cylinders having fluidly isolated from the intake manifold of the engine. The fluid control valve is disposed between the first exhaust outlet and the exhaust conduit and is structured to selectively fluidly couple the first exhaust outlet to the exhaust conduit. Also, the lean NOx catalyst has an inlet structured to receive exhaust gases from the exhaust conduit at a position downstream of the turbine outlet and the fluid control valve.
Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinder(s) being a primary EGR cylinder that is dedicated to provided EGR flow during at least some operating conditions. A controller is structured to control combustion conditions in the cylinders in response to one or more operating conditions associated with the engine.
Abstract:
Systems and methods for exhaust gas recirculation are provided. The system includes a dedicated exhaust gas recirculation loop for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a low pressure exhaust gas recirculation loop for increasing the exhaust gas recirculation amount above that provided by the dedicated exhaust gas recirculation loop.
Abstract:
A method includes operating a spark ignition engine and flowing low pressure exhaust gas recirculation (EGR) from an exhaust to an inlet of the spark ignition engine. The method includes interpreting a parameter affecting an operation of the spark ignition engine, and determining a knock index value in response to the parameter. The method further includes reducing a likelihood of engine knock in response to the knock index value exceeding a knock threshold value.
Abstract:
Systems and methods for fuelling a plurality of cylinders of an internal combustion engine are disclosed. The system includes a dedicated exhaust gas recirculation system for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a fueling system to provide a first flow of fuel to each of the plurality of cylinders and a second flow of fuel to each of the dedicated cylinders that is in addition to the first flow of fuel.
Abstract:
Systems and methods for exhaust gas recirculation are provided. The system includes a dedicated exhaust gas recirculation loop for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a low pressure exhaust gas recirculation loop for increasing the exhaust gas recirculation amount above that provided by the dedicated exhaust gas recirculation loop.
Abstract:
Systems and methods for thermal management of a propane fuel system are disclosed that include controlling a pressure of a fuel tank so that a fuel supply is available for starting of the engine even during cold ambient conditions.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one pair of primary EGR cylinders and a plurality of pairs of non-primary EGR cylinders. The pair of primary EGR cylinders can be connected to an intake with an EGR system that lacks an EGR cooler. In another embodiment, the cylinder pairs include exhaust flow paths that join in the cylinder head to form a common exhaust outlet for each cylinder pair in the cylinder head that is connected directly to the EGR system or to the exhaust system without an exhaust manifold.