摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a first dielectric layer disposed over the substrate. The semiconductor device further includes a buffer layer disposed over the substrate and between first and second walls of a trench of the dielectric layer. The semiconductor device further includes an insulator layer disposed over the buffer layer and between the first and second wall of the trench of the dielectric layer. The semiconductor device also includes a second dielectric layer disposed over the first dielectric layer and the insulator layer. Further, the semiconductor device includes a fin structure disposed over the insulator layer and between first and second walls of a trench of the second dielectric layer.
摘要:
Provided is a method of fabricating a semiconductor device. The method includes: receiving a silicon wafer that contains oxygen; forming a zone in the silicon wafer, the zone being substantially depleted of oxygen; causing a nucleation process to take place in the silicon wafer to form oxygen nuclei in a region of the silicon wafer outside the zone; and growing the oxygen nuclei into defects. Also provided is an apparatus that includes a silicon wafer. The silicon wafer includes: a first portion that is substantially free of oxygen, the first portion being disposed near a surface of the silicon wafer; and a second portion that contains oxygen; wherein the second portion is at least partially surrounded by the first portion.
摘要:
Provided is a method of fabricating a semiconductor device. The method includes forming a first layer on a first side of a first silicon wafer. The first silicon wafer has a second side opposite the first side. The first layer has a coefficient-of-thermal-expansion (CTE) that is lower than that of silicon. The method includes bonding the first wafer to a second silicon wafer in a manner so that the first layer is disposed in between the first and second silicon wafers. The method includes removing a portion of the first silicon wafer from the second side. The method includes forming a second layer over the second side of the first silicon wafer. The second layer has a CTE higher than that of silicon.
摘要:
The present disclosure provides a semiconductor memory device. The device includes a pinning layer having an anti-ferromagnetic material and disposed over a first electrode; a pinned layer disposed over the pinning layer; a composite layer disposed over the pinned layer, the composite layer having a magnetic material randomly distributed in a non-magnetic material; a barrier layer disposed on the composite layer; a free layer disposed over the barrier layer; and a second electrode disposed over the free layer.
摘要:
A semiconductor device includes a semiconductor substrate having a front surface and a back surface, elements formed on the substrate, interconnect metal layers formed over the front surface of the substrate, including a topmost interconnect metal layer, an inter-metal dielectric for insulating each of the plurality of interconnect metal layers, and a bonding pad disposed within the inter-metal dielectric, the bonding pad in contact with one of the interconnect metal layers other than the topmost interconnect metal layer.
摘要:
Provided is a method of fabricating a semiconductor device. The method includes forming a first dielectric layer over a first surface and a second surface of a silicon substrate. the first and second surfaces being opposite surfaces. A first portion of the first dielectric layer covers the first surface of the substrate, and a second portion of the first dielectric layer covers the second surface of the substrate. The method includes forming openings that extend into the substrate from the first surface. The method includes filling the openings with a second dielectric layer. The method includes removing the first portion of the first dielectric layer without removing the second portion of the first dielectric layer.
摘要:
Methods of fabricating an integrated circuit device, such as a thin film resistor, are disclosed. An exemplary method includes providing a semiconductor substrate; forming a resistive layer over the semiconductor substrate; forming a hard mask layer over the resistive layer, wherein the hard mask layer includes a barrier layer over the resistive layer and a dielectric layer over the barrier layer; and forming an opening in the hard mask layer that exposes a portion of the resistive layer.
摘要:
An integrated circuit device is provided. The integrated circuit device can include a substrate; a first radiation-sensing element disposed over a first portion of the substrate; and a second radiation-sensing element disposed over a second portion of the substrate. The first portion comprises a first radiation absorption characteristic, and the second portion comprises a second radiation absorption characteristic different from the first radiation absorption characteristic.
摘要:
An optical image sensor is fabricated by forming a pixel array and a peripheral region surrounding the pixel array on a semiconductor substrate, the peripheral region containing peripheral circuitry. An inter-level-dielectric layer is formed over the substrate and a plurality of interconnect wiring layers are formed over the inter-level-dielectric layer. Each interconnect wiring layer includes interconnecting metal features and a layer of inter-level-dielectric material covering the interconnecting metal features. The plurality of interconnect wiring layers are provided in a manner that there are N levels of wiring layers in the peripheral region and 1 to (N−1) levels of wiring layers over the pixel array. An etch-stop layer is formed over the top-most level interconnecting metal features in the peripheral region.
摘要:
Split-gate memory cells and fabrication methods thereof. A split-gate memory cell comprises a plurality of isolation regions formed on a semiconductor substrate along a first direction, between two adjacent isolation regions defining an active region having a pair of drains and a source region. A pair of floating gates are disposed on the active regions and self-aligned with the isolation regions, wherein a top level of the floating gate is equal to a top level of the isolation regions. A pair of control gates are self-aligned with the floating gates and disposed on the floating gates along a second direction. A source line is disposed between the pair of control gates along the second direction. A pair of select gates are disposed on the outer sidewalls of the pair of control gates along the second direction.