摘要:
A drive strength tunable FinFET, a method of drive strength tuning a FinFET, a drive strength ratio tuned FinFET circuit and a method of drive strength tuning a FinFET, wherein the FinFET has either at least one perpendicular and at least one angled fin or has at least one double-gated fin and one split-gated fin.
摘要:
An integrated circuit design, structure and method for fabrication thereof includes at least one logic device layer and at least two additional separate memory array layers. Each of the logic device layer and the at least two memory array layers is independently optimized for a particular type of logic device or memory device disposed therein. Preferably also disposed within the logic device layer are array sense amplifiers, memory array output drivers and like higher performance circuitry otherwise generally disposed within memory array layer substrates. All layers may be independently powered to provide additional performance enhancement.
摘要:
A semiconductor structure includes at least one silicon substrate having first and second planar surfaces, and at least one through silicon via filled with a conductive material and extending vertically through the first planar surface of the at least one silicon substrate to the second planar surface thereof. The through silicon via forms a vertical interconnection between a plurality of electronic circuits and an amount of dielectric insulation surrounding the through silicon via is varied based on a defined function of the through silicon via.
摘要:
A semiconductor structure is disclosed. The semiconductor structure includes a bulk substrate of a first polarity type, a buried insulator layer disposed on the bulk substrate, an active semiconductor layer disposed on top of the buried insulator layer including a shallow trench isolation region and a diffusion region of the first polarity type, a band region of a second polarity type disposed directly beneath the buried insulator layer and forming a conductive path, a well region of the second polarity type disposed in the bulk substrate and in contact with the band region, a deep trench filled with a conductive material of the first polarity type disposed within the well region, and an electrostatic discharge (ESD) protect diode defined by a junction between a lower portion of the deep trench and the well region.
摘要:
The invention includes an error correcting logic system that allows critical circuits to be hardened with only one redundant unit and without loss of circuit performance. The system provides an interconnecting gate that suppresses a fault in one of at least two redundant dynamic logic gates that feed to the interconnecting gate. The system is applicable to dynamic or static logic systems. The system prevents propagation of a fault, and addresses not only soft errors, but noise-induced errors. Also, there is provided a design structure embodied in a machine readable medium used in a design process, and which includes such error correcting logic system.
摘要:
A content addressable memory (CAM) device includes an array of memory cells arranged in rows in a word line direction and columns arranged in a bit line direction, and compare circuitry configured to compare data presented to the array with data stored in each row and column of the array, and simultaneously indicate match results on each row and column of the array, thereby resulting in a two-dimensional, matrix-based data comparison operation.
摘要:
Three dimensional vertical e-fuse structures and methods of manufacturing the same are provided herein. The method of forming a fuse structure comprises providing a substrate including an insulator layer and forming an opening in the insulator layer. The method further comprises forming a conductive layer along a sidewall of the opening and filling the opening with an insulator material. The vertical e-fuse structure comprises a first contact layer and a second contact layer. The structure further includes a conductive material lined within a via and in electrical contact with the first contact layer and the second contact layer. The conductive material has an increased resistance as a current is applied thereto.
摘要:
A multi-wafer CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-wafer CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the inventive CAM cell can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-wafer CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays.
摘要:
A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
摘要:
An integrated circuit design, structure and method for fabrication Thereof includes at least one logic device layer and at least two additional separate memory array layers. Each of the logic device layer and the at least two memory array layers is independently optimized for a particular type of logic device or memory device disposed therein. Preferably also disposed within the logic device layer are array sense amplifiers, memory array output drivers and like higher performance circuitry otherwise generally disposed within memory array layer substrates. All layers may be independently powered to provide additional performance enhancement.