摘要:
A memory cell made of at least two electrodes with a controllably conductive media between the at least two electrodes is disclosed. The controllably conductive media includes a passive layer made of super ionic material and an active layer. When an external stimuli, such as an applied electric field, is imposed upon the first and second electrode, ions move and dope and/or de-dope the polymer. The applied external stimuli used to dope the polymer is larger than an applied external stimuli to operate the memory cell. The polymer functions as a variable breakdown characteristic diode with electrical characteristics which are a consequence of the doping degree. The memory element may have a current limited read signal. Methods of making the memory devices/cells, methods of using the memory devices/cells, and devices such as computers, hand-held electronic devices and memory devices containing the memory cell(s) are also disclosed.
摘要:
A method for serial sequencing the automatic disturb erase verify (APDEV) function during a multiple sector fast erase mode. The fast erase mode allows a memory device to erase several sectors of memory cells simultaneously. In order to minimize the time required to complete the APDEV and APDE functions, latches store for the address lines of the sector column positions. The APDEV function, therefore, can be performed serially on each of the sectors in the multiple sector group instead of all the sectors in the group simultaneously, thereby decreasing the amount of time required for the APDEV and APDE functions during the fast erase mode.
摘要:
A memory erase management system is provided, including providing a resistive change memory cell, coupling a first line to the resistive change memory cell, coupling a line buffer to the first line, providing a charge storage device coupled to the line buffer, and performing a single pulse erase of the resistive change memory cell by discharging a current from the charge storage device through the resistive change memory cell.
摘要:
For generating a margining voltage for biasing a gate of a CAM (content addressable memory) cell of a flash memory device fabricated on a semiconductor wafer, a high voltage source is provided with a voltage generator fabricated on the semiconductor wafer. A low voltage source is provided from a node coupled to the voltage generator fabricated on the semiconductor wafer. For example, the voltage generator for providing the high voltage source includes a voltage regulator and a charge pump fabricated on the semiconductor wafer, and the low voltage source is the ground node. In addition, a first transistor is coupled to the high voltage source, and a second transistor is coupled to the low voltage source. A first resistor is coupled between the first transistor and an output node, and a second resistor coupled between the second transistor and the output node. The margining voltage is generated at the output node. The first resistor and the second resistor form a resistive voltage divider at the output node between the high voltage source and the low voltage source when the first transistor and the second transistor are turned on. A logic circuit turns on the first transistor and the second transistor when a first set of control signals indicate that program margining of the CAM cell during a BIST (built-in-self-test) mode is invoked. The first transistor, the second transistor, the first resistor, the second resistor, and the logic circuit are fabricated on the semiconductor wafer. In another embodiment of the present invention, the logic circuit turns off the first transistor and turns on the second transistor such that the output node discharges to a voltage of the low voltage source for erase margining of the CAM cell.
摘要:
In a method and system for repairing defective flash memory cells fabricated on a semiconductor substrate, a repair controller and a plurality of voltage sources are fabricated on the semiconductor substrate. The repair controller controls the voltage sources to apply programming voltages on respective CAM (content addressable memory) flash memory cells in a JUICE state for replacing the defective flash memory cells with a corresponding redundancy element of flash memory cells. In addition, a FAILREP logic is fabricated on the semiconductor substrate for entering a HANG state if no redundancy element of flash memory cells is available or if the defective flash memory cells have been previously repaired.
摘要:
A method of and a flash memory device for quenching bitline leakage current during programming and over-erase correction operations. The flash memory cells are organized in an array of I/O blocks with each block having columns and rows. An array of resistors is connected between the common array source connection and ground. The array of resistors is made up of sets of resistors, each set having a programming mode resistor and an APDE mode resistor. A data buffer switches either a programming mode resistor or APDE mode resistor into the circuit when a bitline is selected for either programming or APDE. The values of the resistors are selected to raise the voltage at the source above a selected threshold voltage of the memory cells so that over-erased cells will not provide leakage current to the bitline during either programming or APDE.
摘要:
An improved reading structure (110) for performing a read operation in an array of multiple bits-per-cell flash EEPROM memory cells is provided. A memory core array (12) includes a plurality of memory cells, each being previously programmed to one of a plurality of memory conditions defined by memory core threshold voltages. A reference cell array (22) includes a plurality of reference core cells which are selected together with a selected core cell and provides selectively one of a plurality of reference cell bit line voltages defined by reference cell threshold voltages. Each of the reference cells are previously programmed at the same time as when the memory core cells are being programmed. A precharge circuit (36) is used to precharge the array bit lines and the reference bit lines to a predetermined potential. A detector circuit (28) is responsive to the bit line voltages of the reference cells for generating strobe signals. A reading circuit (26) is responsive to the strobe signals for comparing the memory core threshold voltage with each of the reference cell threshold voltages.
摘要:
In the present method of programming and erasing the resistive memory devices of an array thereof, upon a single command, high current is provided in both the program and erase functions to program and erase only those memory devices whose state is to be changed from the previous state thereof.
摘要:
Systems and methodologies are provided for temperature compensation of thin film diode voltage levels in memory sensing circuits. The subject invention includes a temperature sensitive bias circuit and an array core with a temperature variable select device. The array core can consist of a thin film diode in series with a nanoscale resistive memory cell. The temperature sensitive bias circuit can include a thin film diode in series with two resistors, and provides a temperature compensating bias voltage to the array core. The thin film diode of the temperature sensitive bias circuit tracks the diode of the array core, while the two resistors create a resistive ratio to mimic the effect of temperature and/or process variation(s) on the array core. The compensating bias reference voltage is generated by the temperature sensitive bias circuit, duplicated by a differential amplifier, and utilized to maintain a constant operation voltage level on the nanoscale resistive memory cell.
摘要:
An address sequencer is fabricated on a semiconductor substrate having flash memory cells fabricated thereon for sequencing through the flash memory cells during BIST (built-in-self-test) of the flash memory cells. The address sequencer includes an address sequencer control logic and address sequencer buffers fabricated on the semiconductor substrate. The address sequencer buffers generate a plurality of bits indicating an address of the flash memory cells. The address sequencer control logic controls the buffers to sequence through a respective sequence of bit patterns for each of a plurality of BIST modes.