摘要:
The present invention is directed to a hydroisomerization process using a new crystalline molecular sieve designated SSZ-81, which is synthesized using a structure directing agent selected from 1,5-bis(1-azonia-bicyclo[2.2.2]octane)pentane dications, 1,5-bis(1,4-diazabicyclo[2.2.2]octane)pentane dications, and mixtures thereof.
摘要:
The present invention is directed to a process for isomerizing light paraffins by using a catalyst containing a zeolite selected from the group consisting of CON- and TUN-type zeolites, and at least one Group VIII metal. It has been found that the CON- and TUN-type zeolite catalysts of the present invention selectively convert C6 paraffins into the more favorable higher octane C6 isomer, namely 2,3-dimethylbetane (RON 101.0), over the less favorable C6 isomer, namely octane 2,2-dimethylbutane (RON 91.8).
摘要:
The present invention is directed to a process for converting heavy hydrocarbonaceous feeds to jet and diesel products: using a single reactor, dual catalyst system; or using a single reactor, multiple catalyst system.
摘要:
The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
摘要:
A process is disclosed for preparing a zinc-containing molecular sieve having IFR framework topology and having zinc atoms in its crystal framework, said process comprising: (a) preparing an aqueous mixture containing sources of silicon oxide, zinc oxide, an alkali metal, and an N-benzyl-1,4-diazabicyclo[2.2.2]octane cation having an anionic counterion which is not detrimental to the formation of the molecular sieve; and (b) maintaining the aqueous mixture under conditions sufficient to form crystals of the molecular sieves
摘要:
A process and catalyst are suitable for hydroconverting heavy normal paraffins into lighter normal paraffin products with minimal formation of isoparaffins. The process and catalyst can be used on any feed that contains heavy normal paraffins such as waxy lubricant fractions, slack wax or Fischer Tropsch products. By selectively forming a normal paraffin rich product from heavy normal paraffins, the need for normal paraffin separation and purification processes can be reduced or eliminated.
摘要:
The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
摘要:
The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
摘要:
The present invention provides a method for preparing a zeolite having lattice substituted heteroatoms. The method includes: (a) contacting a calcined borosilicate zeolite with an acid, thereby producing an at least partially deboronated zeolite; and (b) contacting the at least partially deboronated zeolite with a salt-containing aqueous solution comprising one or more salts selected from the group consisting of aluminum salt, gallium salt, and iron salt, thereby producing a silicate or borosilicate zeolite having a lattice comprising aluminum atoms; gallium atoms, iron atoms or a combination thereof. Step (b) is conducted at a pH of about 3.5 or less. Preferably, step (a), step (b) or both are conducted at a temperature of from about ambient temperature to about 300° C., preferably, under stirring/tumbling.
摘要:
An aluminosilicate zeolite is disclosed which has a silica/alumina mole ratio of about 500 or less and pores with at least one cross-sectional dimension greater than 7.5 Angstroms. Also disclosed is a zeolite comprising a first oxide selected from the group consisting of silicon oxide, germanium oxide and mixtures thereof and a second oxide selected from the group consisting of aluminum oxide, gallium oxide, iron oxide, indium oxide and mixtures of aluminum oxide, boron oxide, gallium oxide, iron oxide, indium oxide, titanium oxide, and vanadium oxide, the zeolite having, after calcination, the X-ray diffraction lines of Table I, and having a mole ratio of the first oxide to the second oxide of about 500 or less. The zeolites are useful in catalysts for hydrocarbon conversion reactions.