Abstract:
Disclosed are compositions and methods relating to alpha-amylase from a subset of Exiguobacterium. The compositions and methods are useful, for example, for starch liquefaction and saccharification, for cleaning starchy stains in laundry, dishwashing, and other applications, for textile processing (e.g., desizing), in animal feed for improving digestibility, and for baking and brewing.
Abstract:
Described are variants of alpha-amylase enzymes for use in industrial processes, such as liquefaction of starch. The alpha-amylase variants have increased specific activity allowing the more rapidly reduction of peak viscosity during liquefaction processes. The alpha-amylase is modified by introducing into the amino sequence of a parent Family 13 alpha-amylase polypeptide a mutation at an amino acid residue in the starch-binding groove; wherein the starch-binding groove is formed by amino acid residues in the alpha-helix preceding the first beta-strand in the A domain, the loop between the sixth alpha-helix and the seventh beta-strand in the A domain, the loop between the seventh alpha-helix and the eighth beta-strand in the A domain, and the loop connecting the A domain and the C domain; and wherein the mutation alters the binding of starch to the variant alpha amylase polypeptide compared to the parental alpha amylase polypeptide.
Abstract:
Disclosed herein is one or more subtilisin variant, nucleic acid encoding same, and compositions and methods related to the production and use thereof, including one or more subtilisin variant that has improved stability and/or soil removal compared to one or more reference subtilisin.
Abstract:
Aspects of the present compositions and methods relate to novel metalloproteases polynucleotides encoding the novel metalloprotease, compositions and methods for use thereof.
Abstract:
Disclosed herein is one or more subtilisin variants, nucleic acids encoding same, and compositions and methods related to the production and uses thereof, including one or more subtilisin variants that has improved stability and/or soil removal compared to one or more reference subtilisin.
Abstract:
Disclosed herein is one or more subtilisin variant, nucleic acid encoding same, and compositions and methods related to the production and use thereof, including one or more subtilisin variant that has improved stability and/or soil removal compared to one or more reference subtilisin.
Abstract:
Disclosed herein is one or more subtilisin variant, nucleic acid encoding same, and compositions and methods related to the production and use thereof, including one or more Bacillus gibsonii-clade subtilisin variant that has improved stability and/or soil removal compared to one or more reference subtilisin.
Abstract:
The present disclosure relates to serine proteases cloned from Bacillus gibsonii, and variants thereof. Compositions containing the serine proteases are suitable for use in cleaning fabrics and hard surfaces, as well as in a variety of industrial applications.
Abstract:
The present disclosure relates to serine proteases cloned from Bacillus akibai and Bacillus clarkii, and variants thereof. Compositions containing the serine proteases are suitable for use in cleaning fabrics and hard surfaces, as well as in a variety of industrial applications.
Abstract:
The present invention relates to glucoamylase variants. In particular, the invention relates to variants in the starch binding domain (SBD) of a glucoamylase. The invention also relates to variants having altered properties (e.g., improved thermostability and/or increased specific activity) as compared to a corresponding parent glucoamylase. The present invention also provides enzyme compositions comprising the variant glucoamylases; DNA constructs comprising polynucleotides encoding the variants; and methods of producing the glucoamylase variants in host cells.