摘要:
A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
摘要:
An implantable device monitors the balance between sympathetic tone and parasympathetic tone as a function of an activity level. Cardio-neurological healthy users exhibit a generally sympathetic tone in conjunction with heavy activity level and a generally parasympathetic tone in conjunction with periods of low activity level. Deviations from expected results are associated with a health problem. Measured conditions are stored and available for subsequent reporting to a remote programmer. Therapy delivered by an implantable device is determined as a function of the relationship between autonomic balance and activity level.
摘要:
An implantable activity detector can detect metabolic stress levels, which can be normalized, such as to identify times of activities such as walking and running or to identify trends such as a decrease in metabolic activity. The data can be derived from different sources such as an accelerometer and pedometer. This data can be compared to independently specifiable thresholds, such as to trigger an alert or responsive therapy, or to display one or more trends. The information can also be combined with other congestive heart failure (CHF) indications. The alert can notify the patient or a caregiver, such as via remote monitoring. Metabolic activity data from one or more of the activity detectors can be used to establish a model of metabolic stress, to which further activity data can be compared for identifying periods of increased or decreased metabolic stress.
摘要:
Systems and methods provide for detecting respiration disturbances and changes in respiration disturbances, preferably by detecting variability in one or more respiration parameters. Respiration rate variability is determined for a variety of diagnostic and therapeutic purposes, including disease/disorder detection, diagnosis, treatment, and therapy titration. Systems and methods provide for generating a footprint, such as a two- or three-dimensional histogram, representative of a patient's respiration parameter variability, and generating one or more indices representative of quantitative measurements of the footprint.
摘要:
A system, method, or device monitor a force-frequency relationship exhibited by a patient's heart. A contractility characteristic, such as a heart sound characteristic of an S1 heart sound, is measured. The contractility characteristic indicates the forcefulness of a contraction of the heart. The frequency at which the heart is contracting is determined. A group of (contractility characteristic, heart rate) pairs is stored in a memory device. The group of pairs defines a force-frequency relationship for the heart. The method may be implemented by an implantable device, or by a system including a implantable device.
摘要:
Systolic timing intervals are measured in response to delivering pacing energy to a pacing site of a patient's heart. An estimate of a patient's acute response to cardiac resynchronization therapy (CRT) for the pacing site is determined using the measured systolic timing intervals. The estimate is compared to a threshold. The threshold preferably distinguishes between acute responsiveness and non-responsiveness to CRT for a patient population. An indication of acute responsiveness to CRT for the pacing site may be produced in response to the comparison.
摘要:
A cardiac rhythm management system includes a heart sound detector providing for detection of the third heart sounds (S3). An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including the second heart sounds (S2) and S3. The heart sound detector detects occurrences of S2 and starts S3 detection windows each after a predetermined delay after a detected occurrence of S2. The occurrences of S3 are then detected from the acoustic signal within the S3 detection windows.
摘要:
A cardiac rhythm management system provides for the trending of a third heart sound (S3) index. The S3 index is a ratio, or an estimate of the ratio, of the number of S3 beats to the number of all heart heats, where the S3 beats are each a heart beat during which an occurrence of S3 is detected. An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including S3. An S3 detector detects occurrences of S3 from the acoustic signal. A heart sound processing system trends the S3 index on a periodic basis to allow continuous monitoring of the S3 activity level, which is indicative of conditions related to heart failure.
摘要:
A system or method including a device configured to measure at least one pharmacological effect of a drug on a patient. The measured pharmacological effect is compared to an expected pharmacodynamic model. The system can allow for real-time monitoring of positive and side-effects of drugs as well as drug resistance to optimize individual therapy. The system can also enable patient compliance monitoring.