Abstract:
In the data transmission method, a MAC layer receives data from an upper layer, classifies the data according to destination addresses and traffic identifiers, aggregates the data by destination address and traffic identifier as a first transmission unit, aggregates the first transmission units having the identical destination address as a second transmission unit, and transmits the second transmission units having different destination addresses in a single frame. The data transmission method allows packets transferred from the upper layer to be hierarchically aggregated by DAs and TIDs and then packaged into a data unit for each destination such that it is possible to transmit the data at an optimal data rate for each destination terminal.
Abstract:
A method of forming a silicon oxide layer of a semiconductor device comprising coating a spin-on glass (SOG) composition including perhydropolysilazane having a compound of the formula (SiH2NH2)n where n represents a positive integer on a semiconductor substrate having a surface discontinuity, to form a planar SOG layer; and forming a silicon oxide layer with a planar surface by implementing a first heat treatment to convert an SOG solution into oxide and a second heat treatment to densify thus obtained oxide. The silicon oxide layer of the present invention can bury a gap between gaps of VLSI having a high aspect ratio and gives the same characteristics as a CVD oxide layer. Further, the oxidation of silicon in the active region is restrained in the present invention to secure dimension stability. Also disclosed is a semiconductor device made by the method.
Abstract:
A terminal location estimation method in a wireless communication system in which an access point (AP) provides an access service to a plurality of terminals includes defining a plurality of beam spaces around the AP through space multiplexing; scheduling the beam spaces according to a predetermined pattern; simultaneously forming a beam in at least one beam space; and detecting the existence and location of a terminal according to whether a response message in response to the formed beam is received. Accordingly, an AP forms beams in a predetermined scheduling pattern, and each of the terminals detecting the beams registers its location by informing the AP that each of the terminals exists in a relevant beam area, and thus, a location of each of the terminals can be estimated without using a complex DOA algorithm.
Abstract:
A data transceiver and a data reception method for reducing power consumption in a mobile communication system are provided. The data transceiver includes a transmitter which transmits a plurality of data frames during a predetermined transmission period; and a receiver which receives data frames in the predetermined transmission period, if the transmission period is allowed and monitors with minimal operation power whether data transmission is in progress or completed in the transmission period, if the transmission period is not allowed.
Abstract:
A channel estimation method in a Multiple Input Multiple Output (MIMO) mobile communication system having a plurality of transmission antennas and a plurality of reception antennas is provided. In a method of transmitting, by a transmitter, channel estimation signals for channel estimation at a receiver, the transmission antennas transmit the same channel estimation signals for a first frame transmission duration, and transmit predetermined channel estimation signals corresponding to the number of the transmission antennas for a second frame transmission duration.
Abstract:
An apparatus is provided for efficiently allocating a transmission period in a WLAN system. An access point (AP) transmits a PSMP message providing a downlink period and an uplink period provided to each station (STA), and at least one sub PSMP frame indicating a period of at least one of a downlink and an uplink for an STA requiring additional resource allocation. After exchanging data with the AP in the downlink and uplink periods provided by the PSMP frame, if there is a need for additional resource allocation, the STA receives the at least one sub PSMP frame and exchanges data with the AP in the period provided by the each sub PSMP frame.
Abstract:
In the data transmission method, a MAC layer receives data from an upper layer, classifies the data according to destination addresses and traffic identifiers, aggregates the data by destination address and traffic identifier as a first transmission unit, aggregates the first transmission units having the identical destination address as a second transmission unit, and transmits the second transmission units having different destination addresses in a single frame. The data transmission method allows packets transferred from the upper layer to be hierarchically aggregated by DAs and TIDs and then packaged into a data unit for each destination such that it is possible to transmit the data at an optimal data rate for each destination terminal.
Abstract:
A method is provided for allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period and an uplink period allocated to each station (STA), and at least one sub PSMP frame indicating an allocated downlink period for at least one of a retransmission of downlink data and a transmission of an ACK indicating successful receipt of uplink data. After exchanging data with the AP in the downlink and uplink periods indicated by the PSMP frame, an STA receives the each sub PSMP frame, and performs at least one of a reception of the retransmitted downlink data and a reception of the ACK in the downlink period indicated by the each sub MAP frame.
Abstract:
There are provided a memory transistor having a select transistor with asymmetric gate electrode structure and an inverted T-shaped floating gates and a method for forming the same. A gate electrode of the select transistor adjacent to a memory transistor has substantially an inverted T-shaped figure, whereas the gate electrode of the select transistor opposite to the memory transistor has nearly a box-shaped figure. In order to form the floating gate of the memory transistor in shape of the inverted T, a region for the select transistor is closed when opening a region for the memory transistor.
Abstract:
A spin-on glass (SOG) composition and a method of forming a silicon oxide layer utilizing the SOG composition are disclosed. The method includes coating on a semiconductor substrate having a surface discontinuity, an SOG composition containing polysilazane having a compound of the formula —(SiH2NH)n— wherein n represents a positive integer, a weight average molecular weight within the range of about 3,300 to 3,700 to form a planar SOG layer. The SOG layer is converted to a silicon oxide layer with a planar surface by curing the SOG layer. Also disclosed is a semiconductor device made by the method.