Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins (16) of a film attaching instrument (jig) in second guide holes (10) of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins (16); causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins (16) in first guide holes (7) of a lens array main unit; fitting a film holding protrusion (15) in a depression part (6); bonding the film (D) to a bonding region (i); removing the pins (16); and causing a detachment between the film (D) and a second detachment film (E).
Abstract:
The light receptacle has: a light transmitting light receptacle main body (130); support parts (140) disposed on both ends of the light receptacle main body (130); first optical surfaces (132) to which light emitted by light-emitting elements (114) is made incident; second optical surfaces (136) that output light made incident at the plurality of first optical surfaces (132) toward the end surfaces of a plurality of light transmitting bodies (116); and four adhesive holding parts (142) that are through holes or recesses with the entire periphery thereof surrounded by the support parts and that are disposed at the four corners of the light receptacle (120) in a plane view. The light receptacle main body (130) and the support parts (140) have a plane-symmetrical shape, and the four adhesive holding parts (142) are disposed in plane-symmetrical positions.
Abstract:
In an embodiment, an optical receptacle includes a first lens face that is disposed on a first surface 2a on a photoelectric conversion device 3 side in an optical receptacle main body so that a portion of light of the light of a light-emitting element 7 is incident thereon, a first reflective surface 14 that is disposed on a second surface 2b on the side opposite to the first surface 2a and reflects the light that has been incident on the first lens face 11, and a second reflective surface 16 that is disposed on the first surface 2a continuously with the first lens face 11 so that a remaining portion of light of the light of the light-emitting element 7 is incident thereon and reflects the incident remaining portion of light towards a light-receiving element 8 as monitor light are included.
Abstract:
The optical receptacle, which is disposed between one or more vertical resonator surface emitting lasers arranged on a substrate and one or more optical transmission bodies to optically couple the vertical resonator surface emitting lasers and end surfaces of the optical transmission bodies, has: a first optical surface on which light emitted from the vertical resonator surface emitting lasers is incident; and a second optical surface for emitting light, which enters the first optical surface and passes through the inside thereof, toward the end surfaces of the optical transmission bodies. The first optical surface is disposed such that a central axis of the first optical surface is inclined with respect to an optical axis of the vertical resonator surface emitting laser or the central axis and the optical axis are parallel to and do not coincide with each other.
Abstract:
An optical receptacle has: a first optical surface, a first transmission part, a light separation part, a second optical surface and a third optical surface. The light separation part has a reflection part and a second transmission part. The first transmission part and two or more of a plurality of second transmission parts are present within an optical effectiveness region, where the optical effectiveness region is a region from a central axis to the radius of the larger of the first optical surface and the second optical surface, and the central axis is the optical axis of the light that impinges on the first optical surface and is emitted at the second optical surface.
Abstract:
The problem addressed by the present invention is to provide: an optical receptacle that can be easily positioned with a photoelectric converter having a light-emitting element and a detection element. In order to solve the problem, an optical receptacle is provided, said optical receptacle being positioned between a light transmission medium and a photoelectric converter having a substrate, a photoelectric conversion element and a detection element, and the purpose of the optical receptacle being to optically couple the photoelectric conversion element and the end surface of the light transmission medium. The optical receptacle comprises a filter, a holding member for holding the filter, and a receptacle body. In the optical receptacle the holding member and the receptacle body are separate bodies, and the filter reflects towards the detection element side, as monitor light, part of the light emitted from the photoelectric conversion element, and transmits the remainder as signal light.
Abstract:
Provided is an optical receptacle (140) having an installation plane (141), an optical plane, and a reference plane (147). An inclination angle of the reference plane (147) with respect to the installation plane (141) is smaller than an inclination angle of the optical plane with respect to the installation plane (141). Then, a first inclination angle θ1 that is the inclination angle of the reference plane (147) with respect to the installation plane (141) and a second inclination angle θ2 that is an inclination angle of the optical plane with respect to the reference plane (147) are measured. Then, the first inclination angle θ1 is added to the second inclination angle θ2 to calculate a third inclination angle θ3 that is the inclination angle of the optical plane with respect to the installation plane (141).
Abstract:
This optical receptacle has the following: a concavity formed in a contact surface that contacts a substrate; a first optical surface, located at the bottom of said concavity, via which either light outputted from a photoelectric conversion element is inputted or light that is outputted from an end face of a light-transporting body and passes through the interior is outputted towards the photoelectric conversion element; a second optical surface via which either light that is inputted via the first optical surface and passes through the interior is outputted towards the end face of the light-transporting body or light outputted from the end face of the light-transporting body is inputted; a reflective surface, located in the path that light takes between the first optical surface and the second optical surface; and a connecting part that connects the interior of the concavity to the outside thereof.
Abstract:
This light receptacle comprises: first optical surfaces on which light beams emitted from light emitting elements are respectively caused to be incident; second optical surfaces which emit the light beams incident on first optical surfaces respectively toward the end faces of light transmission bodies; a third optical surface which reflects the light beams incident on the first optical surfaces toward the second optical surfaces; and recesses which are formed in the surface on which second optical surfaces are arranged. The distance between the centers of two adjacent first optical surfaces before mold release and the distance between the centers of two adjacent second optical surfaces before mold release during injection molding are shorter than the distance between the optical axes of light beams emitted from two adjacent light emitting elements that are arranged so as to face each other.
Abstract:
A lens array fabrication method for fabricating a lens array includes: receiving pins of a film attaching instrument (jig) in second guide holes of a film-containing base plate; bonding a placement area and an adhesion layer (F); removing the pins; causing a detachment between a first detachment film (C) and a pressure-sensitive adhesive optical film (D); separating three layers (D) to (F) from two layers (B) and (C); receiving the pins in first guide holes of a lens array main unit; fitting a film holding protrusion in a depression part; bonding the film (D) to a bonding region (i); removing the pins; and causing a detachment between the film (D) and a second detachment film (E).