Abstract:
A bulk acoustic wave resonator includes a resonator region having electrodes and a piezoelectric layer among the electrodes. The piezoelectric layer has a groove that bounds at least part of an electroacoustically active region of the piezoelectric layer. A depth of the groove is at least 50% of a thickness of the piezoelectric layer.
Abstract:
A module for a mobile radio device is proposed, whose central element is a multiswitch MS, which, as desired, can connect outputs for transmission and/or reception branches SZ, EZ of different mobile radio systems to an antenna ANT. The module is suitable for a multiband operation and, optionally, additional multimode operations and includes at least one pair of outputs for transmission and reception branches of a frequency duplexed mobile radio system. Between each output of the multiswitch and the antenna, a matching element is provided, which allows an electrical matching of the branches to be connected to it. The duplex operation is carried out via separate transmission and reception filters, or on the switch via separate outputs for transmission and reception branches.
Abstract:
Disclosed is a resonator that is mounted on a substrate, operates with acoustic bulk waves, and is disposed above an acoustic mirror. According to the invention, the basic mode of the acoustic bulk wave that can be generated in the resonator is suppressed while a higher mode can be excited in parallel and be utilized for the resonator by adjusting the acoustic mirror.
Abstract:
An arrangement includes a substrate, a filter, a first bulk acoustic wave resonator, a second bulk acoustic wave resonator, and a large surface covering. The first bulk acoustic wave resonator includes a first electrode and a second electrode and is arranged flatly on the substrate. The second bulk acoustic wave resonator includes a first electrode and a second electrode and is arranged flatly on the substrate. The large-surface covering includes a metal layer over the substrate. The metal layer is connected to a ground terminal.
Abstract:
A bulk acoustic wave resonator includes a resonator region having electrodes and a piezoelectric layer among the electrodes. The piezoelectric layer has a groove that bounds at least part of an electroacoustically active region of the piezoelectric layer. A depth of the groove is at least 50% of a thickness of the piezoelectric layer.
Abstract:
A method for improving heat dissipation in an encapsulated electronic package usually referred to as a chip-size SAW package. The package comprises one or more acoustic-wave components fabricated on a die, which is disposed on an electrically non-conductive carrier separated by electrically conducting bumps. The top of the package is covered by a laminate and a hermetic seal layer. Heat dissipation can be improved by removing a part of the laminate and then depositing a layer of thermal conducting material on the package, and by providing one or more heat conducting paths through the carrier.
Abstract:
The invention relates to an electronic component having a layer sequence, which comprises at least a first electrode (10), a second electrode (20) and an active region (30) and contains monoatomic carbon layers at least in sub-regions.
Abstract:
A directional coupler, comprising a first high-frequency line for feeding a first high-frequency signal, a second high-frequency line for feeding a second high-frequency signal, and a coupling line for outputting signals from the first and the second high-frequency lines, wherein the coupling line comprises resistive segments, each comprising a predetermined impedance. Coupling properties and resistive damping and adapting properties can be integrated in the coupling line. A compact and low-cost construction of the directional coupler is thus made possible.
Abstract:
An impedance matching circuit for matching planar antennas includes a signal path with a signal path input and a signal path output. A first capacitive element with variable capacitance is connected between the signal path input and signal path output. A second capacitive element with variable capacitance is connected between the signal path and ground. A first inductive element is connected between the signal path input and ground. A second inductive element is connected between the signal path output and ground. An antenna line with an impedance between 30 and 60 ohm is connected to the signal path output.
Abstract:
The invention relates to a filter arrangement (10) comprising a substrate (16) having a first series resonator (11) and a first and a second parallel resonator (12, 13). The filter arrangement (10) further comprises a carrier (18), on which the substrate (16) is arranged and which comprises a first inductor (17), the first connection of which is coupled to a first connection of the first series resonator (11) by means of the first parallel resonator (12) and to a second connection of the first series resonator (11) by means of the second parallel resonator (13).