Abstract:
A motor module for modularly making a front and/or rear electric axle, comprising an electric motor generator and a gear train enclosed in a gearbox case permanently fixed to a stator of said electric motor-generator, the module having an L-shape. Electric axle comprising a pair of L-shaped modules for making a T-shaped front electric axle and a U-shaped rear electric axle.
Abstract:
An electric or hybrid sport car comprising a vehicular frame and a floor formed by a fixed portion with the vehicular frame and a removable base and wherein a bottom part of the base consists of a so-called platform, which consists of a plate made of metal or high-resistance composite material, exposed to the outside so as to operatively face the ground on which the car rests. A rear part of the platform diverges from the ground proceeding towards a rear part of the car, and wherein said rear part of the platform supports a support frame of a rear battery pack, and wherein said support frame comprises a plurality of support layers for as many battery layers, which include columns operatively vertical and structures parallel to the rear portion of the platform.
Abstract:
A method to control an electrically-operated turbocharger in a supercharged internal combustion engine, wherein the turbocharger has: a turbine, which is inserted in an exhaust duct to rotate under the thrust of the exhaust gases and operates an electric generator, and a compressor, which is mechanically independent of the turbine, is inserted in an intake duct to increase the air pressure and is operated by an electric engine; wherein the control method comprises the steps of: establishing when the intensity of the acoustic emission in the exhaust of the internal combustion engine needs to be increased; and reducing the mechanical power actually absorbed by the electric generator relative to the available mechanical power to increase the intensity of the acoustic emission in the exhaust of the internal combustion engine.
Abstract:
A road vehicle having: a plurality of operating devices, and a frame comprising two door sills, which are oriented longitudinally, are arranged laterally on opposite sides of the frame, and have an internally hollow tubular shape, so that a seat is defined inside each door sill, in which at least one operating device is arranged inside at least one door sill in the corresponding seat.
Abstract:
A forced induction device for an internal combustion engine includes a compressor operable to provide compressed air, an intake line configured to supply an intake manifold of the internal combustion engine with the compressed air provided by the compressor, a turbine configured to generate mechanical power through expansion of at least a portion of exhaust gases of the internal combustion engine, an exhaust line configured to supply the turbine with the exhaust gas portion coming from an exhaust manifold of the internal combustion engine, characterized by further comprising a hydrostatic transmission configured to drive the compressor by means of the mechanical power generated by the turbine.
Abstract:
Electric vehicle having a chassis, which supports a pair of front wheels and a pair of rear wheels, a passenger compartment, which is arranged between the front wheels and the rear wheels, at least one electric motor connected to drive wheels, an electric energy storage device, an air conditioning system, which is designed to air condition the passenger compartment by heating or cooling the air present in the passenger compartment, and a control unit, which is configured to activate the air conditioning system even when the vehicle is parked and connected to an external charging system, wherein the air conditioning system has at least one thermal device, which is designed to exchange heat directly and only with the chassis and the control unit is configured to activate the thermal device even when the vehicle is parked and connected to an external charging system.
Abstract:
A road vehicle having: two front wheels; two rear wheels; an engine, which transmits the motion to drive wheels; and a cooling system, which is connected to the engine. The cooling system has: a cooling circuit where a cooling liquid flows; two first radiators, which are connected to the cooling circuit and make up, together, a first “V”-shaped structure, which is arranged on a right side of the road vehicle; and two second radiators, which are connected to the cooling circuit and make up, together, a second “V”-shaped structure, which is arranged on a left side of the road vehicle.
Abstract:
High-performance road vehicle having: a plurality of replaceable or removable components; a control unit that supervises the operation of the road vehicle; at least one electronic identification device, which is fitted on a corresponding component, has a memory designed to contain at least one unique identifying code of the component and has a first transmission organ designed to send the data contained in the memory; and a second transmission organ designed to communicate with the first transmission organ and connected to the control unit to allow the control unit to interact with the electronic identification device.
Abstract:
Sports car including a cockpit equipped with a windscreen that delimits the cockpit, the windscreen being supported by a peripheral frame made of high-resistance material including an upper crossbeam at the top, a lower crossbeam at the bottom and a pair of side uprights connecting said upper and lower crossbeams, the windscreen including a front central upright arranged between said front side uprights to connect said upper and lower crossbeams.
Abstract:
A battery module for a system for the storage of electrical energy for an electric drive vehicle. The battery module has: a group of chemical batteries arranged parallel to and beside one another; at least two connection plates which rest against opposite ends of the group of chemical batteries so as to electrically connect the poles of the chemical batteries to one another; two support bodies coupled to opposite ends of the group of chemical batteries so as to provide the chemical batteries with a stable mechanical support; two lids, which are coupled to the support bodies so as to create respective collecting chambers having at least one draining opening; and at least two tie rods, which are arranged on opposite sides of the battery module and tie together the lids and the support bodies in a packed manner.