Abstract:
A car having: two front wheels; two rear wheels; a body, which has two front wheel compartments, each housing, on the inside, a corresponding front wheel, and two rear wheel compartments, each housing, on the inside, a corresponding rear wheel; and two covering panels, each arranged in the area of a corresponding wheel compartment to close the wheel compartment. Each covering panel is mounted on the body so as to be movable between a contracted position, in which the covering panel is completely flush with the body, and an expanded position, in which the covering panel is at least partially spaced apart from the body. Two actuator devices are provided, each coupled to a corresponding covering panel so as to move the covering panel between the contracted position and the expanded position.
Abstract:
A car having: a frame; four wheels, which are mounted on the frame in a rotary manner; a body, which covers the frame; at least one compressed air tank; and at least one gas pusher, which is connected to the compressed air tank, is integral to the frame and has a plurality of nozzles, which face outwards, can be activated in order to generate respective air jets, are arranged parallel to and beside one another, have the same orientation and are sized so as to generate different pneumatic thrusts given the same pressure of the compressed air flowing in; a pressure sensor, which determines a pressure inside the compressed air tank; and a control unit, which activates the plurality of nozzles in a coordinated manner so as to generate, as a whole, a desired pneumatic thrust based on the pressure inside the compressed air tank.
Abstract:
A method to control an electrically-operated turbocharger in a supercharged internal combustion engine, wherein the turbocharger has: a turbine, which is inserted in an exhaust duct to rotate under the thrust of the exhaust gases and operates an electric generator, and a compressor, which is mechanically independent of the turbine, is inserted in an intake duct to increase the air pressure and is operated by an electric engine; wherein the control method comprises the steps of: establishing when the intensity of the acoustic emission in the exhaust of the internal combustion engine needs to be increased; and reducing the mechanical power actually absorbed by the electric generator relative to the available mechanical power to increase the intensity of the acoustic emission in the exhaust of the internal combustion engine.
Abstract:
A system for the storage of electric energy for a vehicle with electric propulsion; the storage system is provided with: a pack of chemical batteries, each of which has a cylindrical shape having a central symmetry axis and presents, at one end, a positive pole and, at an opposite end, a negative pole; the batteries are arranged in at least one row, in which all the chemical batteries of the row are parallel to each other and are arranged one next to the other with a predetermined pitch; and with a plurality of electrical connection elements for connecting the poles of the chemical batteries of a same row, so as to create groups of chemical batteries, in which the chemical batteries are connected to each other in parallel, and so as to connect the groups of chemical batteries to each other in series.
Abstract:
An internal combustion engine having two cylinders, which are arranged in “V” configuration and accommodate respective pistons, and a first balancing body, which is fixed to a crankshaft at a first piston so that the first order reciprocating inertial forces of the first piston lie on a first straight line forming a first inclination angle which is not zero with the first cylinder; the combination of an angle between the cylinders with the first inclination angle is such that the first straight line on which the first order reciprocating inertial forces generated by the first piston lies is parallel to a second straight line on which the first order reciprocating inertial forces generated by the reciprocating motion of a second piston lie.
Abstract:
A system for the storage of electric energy for a vehicle with electric propulsion, which presents a longitudinal direction, which is parallel to the direction of the rectilinear motion, and a transverse direction, which is perpendicular to the longitudinal direction; the storage system is provided with a pack of chemical batteries, which are connected to each other in series and in parallel and comprise respective electrochemical cells; each chemical battery has a cylindrical shape having a central symmetry axis; and a support matrix made of plastic material is provided, inside which the chemical batteries are embedded so that the chemical batteries are completely covered by the support matrix itself.
Abstract:
A turbine assembly for an internal combustion engine having: a first turbine that rotates around a first rotation axis and is configured to rotate due to the thrust exerted by exhaust gases emitted by the internal combustion engine; a second turbine which is independent of and separate from the first turbine, rotates around a second rotation axis parallel to and spaced from the first rotation axis, and is configured to rotate due to the thrust exerted by exhaust gases emitted by the internal combustion engine; an electric generator operated by the first turbine; and a transmission device that connects both the turbines to the same electric generator.
Abstract:
High-performance road vehicle having: a plurality of replaceable or removable components; a control unit, which controls the operation of the road vehicle; at least one electronic identification device, which is fitted on a corresponding component, has a memory designed to contain at least one unique identifying code of the component and has a first transmission organ designed to send the data contained in the memory; and a second transmission organ, designed to communicate with the first transmission organ and connected to the control unit to allow the control unit to read the univocal identifying code of the component.
Abstract:
Battery module for an electrical storage system for an electric drive vehicle; wherein the battery module includes: a set of parallel cylindrical chemical batteries arranged side by side, at least two conductive plates arranged on said opposite sides and welded to the corresponding opposite terminals of said set of batteries, at least one refrigerated wall set adherent to one of said at least two conductive plates, at least one pad sandwiched between said at least one refrigerated wall and said at least one respective conductive plate, in which said pad is made of an electrically insulating and thermally conductive material.
Abstract:
An internal combustion engine having two cylinders, which are arranged in “V” configuration and accommodate respective pistons, and a first balancing body, which is fixed to a crankshaft at a first piston so that the first order reciprocating inertial forces of the first piston lie on a first straight line forming a first inclination angle which is not zero with the first cylinder; the combination of an angle between the cylinders with the first inclination angle is such that the first straight line on which the first order reciprocating inertial forces generated by the first piston lies is parallel to a second straight line on which the first order reciprocating inertial forces generated by the reciprocating motion of a second piston lie.