Abstract:
The present invention is directed to a method of coating a substrate having a solidified layer formed thereon, that features depositing a flowable material upon the solidified layer and forming an additional layer having a smooth flowable surface upon the substrate by imparting rotational movement upon the substrate followed by leveling of the flowable material in an absence of the rotational movement. After the additional layer is formed, the same is solidified.
Abstract:
The present invention is directed to a method of controlling a quantity of liquid from extruding from a volumetric gap defined between a mold included in the substrate and a region of the substrate in superimposition therewith that features varying the capillary forces between the liquid and one of the template and the substrate. To that end, the method includes generating capillary forces between the liquid and one of the template and the substrate; and varying a magnitude of the forces to create a gradient of forces.
Abstract:
The present invention provides a method that features improved wetting characteristics while allowing preferential adhesion and release characteristics with respect to a substrate and a mold having imprinting material disposed therebetween. The method includes coating a surface of the mold with a volume of surfactant containing solution. The surfactant in the solution includes a hydrophobic component consisting essentially of a plurality of fluorine-containing molecules. The distribution of the plurality of the fluorine atoms in the fluorine-containing molecules, as well as the fluorine-containing molecules throughout the volume provides a desired contact angle with respect to a polymerizable composition disposed on the substrate. The contact angle is in a range of 50° or less.
Abstract:
In a substantially planar circuit, the conductors are separated by an inorganic material with a dielectric constant of less than about 3.0. The dielectric layers are formed in a process that includes defining trenches and/or vias for the conductors by imprinting an initially planar layer of a radiation curable composition. The imprinting die is preferably UV transparent such that the composition is UV cured while the imprint die is in place. The curable composition includes an organic modified silicate compound and a second decomposable organic component, the latter forming nanometer scale pores as the organic compounds are subsequently decomposed to provide a polysilicate matrix. The pores reduce the effective dielectric constant from that of otherwise dense silicon dioxide.
Abstract:
The present invention provides a method of planarizing a substrate with a template spaced-apart from the substrate having a liquid disposed therebetween, the method including: contacting the liquid with the template forming a first shape therein; and impinging radiation upon the liquid causing a reduction in volume of the liquid, with the first shape compensating for the reduction in volume such that upon impinging the actinic radiation upon the liquid, the liquid forms a contoured layer having a substantially planar shape.
Abstract:
The present invention is directed to a material for use in imprint lithography that features a composition having a viscosity associated therewith and including a surfactant, a polymerizable component, and an initiator responsive to a stimuli to vary the viscosity in response thereto, with the composition, in a liquid state, having the viscosity being lower than about 100 centipoises, a vapor pressure of less than about 20 Torr, and in a solid cured state a tensile modulus of greater than about 100 MPa, a break stress of greater than about 3 MPa and an elongation at break of greater than about 2%.
Abstract:
The present invention is a system that selectively directs radiation of multiple wavelengths at a substrate to facilitate pattern formation. The system may include a wavelength discriminator to filter the radiation and an absorption layer to develop a localized heat source. The localized heat source may be employed to raise a temperature of an imprinting layer. This improves the flow rate and the fill factor of the material disposed within the imprinting layer, thus reducing the time required to fill the features defined on a mold.
Abstract:
The present invention is a method of increasing the flow rate of an imprinting layer disposed between a source of radiation and a target to facilitate pattern formation. Infrared radiation is directed toward the target with the imprinting layer substantially transparent to infrared radiation. The target substantially absorbs the infrared radiation to create a thermal energy in the same, and the thermal energy is subsequently transferred to the liquid, causing a temperature rise of the liquid, and thus improving a flow rate of the imprinting layer and reducing the time required to fill the features defined on a mold.
Abstract:
The present invention provides compositions that feature improved preferential adhesion and release characteristics with respect to a substrate and a mold having imprinting material disposed therebetween. To that end, the compositions facilitate bifurcation of the imprinting into a surfactant-component-rich sub-portion and a surfactant-component-depleted sub-portion located between said surfactant-component-rich sub-portion and said substrate. This surfactant-component-rich sub-portion attenuates the adhesion forces between the mold and the imprinting material, once solidified.