Abstract:
An embodiment of a system is provided herein, wherein the system allows for the analysis and selection of numerous experimental conditions to optimize transfection efficiency and cell viability. The system is used for magnetic particle based nucleic acid delivery by optimizing various parameters. The system comprises a control module; an incubation module for incubating magnetic nanoparticle and nucleic acid; a transfection module and an analysis module.
Abstract:
A system for melting, sintering, or heat treating a material is provided. The system includes a cathode, an anode, and a focus coil assembly having a quadrupole magnet. The quadrupole magnet includes four poles and a yoke. The four poles are spaced apart and surround a beam cavity. Each of the four poles includes a pole face proximate the beam cavity and an end opposite the pole face. The first and third poles are aligned along an x-axis and configured to have a first magnetic polarity at their respective pole faces and a second magnetic polarity opposite the first magnetic polarity at their respective ends. The second and fourth poles are aligned along a y-axis and configured to have the second magnetic polarity at their respective pole faces and the first magnetic polarity at their respective ends. The yoke surrounds the poles and is coupled to the poles.
Abstract:
Disclosed herein are multi-cuvette cartridges, flow cells, and electrical pulse systems for treatment of large volumes of biological samples with pulsed electric fields. The multi-cuvette cartridges systems may include mechanical motors for automatic positioning and alignment between the cuvettes and the electrodes of the electrical pulse systems. The flow cell systems may include fluidic systems, such as pumps, nozzles and valves, which may operate in coordination with the electrical systems for efficient exposition of biological samples. Embodiments having flow cell systems that allow “on-demand” production of activated sample are also disclosed.
Abstract:
An apparatus is provided. The apparatus includes a compact vacuum chamber housing defining a vacuum chamber and an ion beam inlet, a rotating target positioned within the vacuum chamber, the ion beam inlet oriented to receive ions such that the ions impinge upon the rotating target, a motor core positioned within the vacuum chamber and coupled to the rotating target, and a motor stator electromagnetically coupled with the motor core.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Methods and systems for releasing growth factors are disclosed. In certain embodiments, a blood sample is exposed to a sequence of one or more electric pulses to trigger release of a growth factor in the sample. In certain embodiments, the growth factor release is not accompanied by clotting within the blood sample.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Methods and systems for generating a tunable or customizable activated product composition are related. In certain embodiments, one or more of electric pulse parameters, flow rate, or sample container size are varied so as to generate the activated product composition. The activated product composition may be customized or optimized based for a particular patient or procedure.
Abstract:
An X-ray source comprising a cathode element adapted to generate a stream of electrons. The X-ray source includes an anode element adapted to present a focal spot position for the stream of electrons. A vacuum chamber contains the cathode element and anode element. The anode element and/or the cathode element can be moveable with respect to the other in coordination with the generation of the stream of electrons.