Abstract:
A multi-layer integrated circuit structure includes (among other components) a first layer having gate conductors, a second layer having M0 conductors, a third layer having M1 conductors, and a fourth layer having M2 conductors. The M0 and M2 conductors are perpendicular to the gate conductors, and parallel to each other. The M1 conductors connect the M0 conductors to the M2 conductors. The gate conductors are positioned in the first layer in the same locations in the horizontal direction. The M1 conductors are positioned in the third layer in a different location in the horizontal direction that is different from the locations of the gate conductors, so that the M1 conductors do not overlap any of the gate conductors, solving a substantial routing challenge for the input and output contacts.
Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
A method of forming a pattern for interconnect lines in an integrated circuit includes providing a structure having a first lithographic stack, a mandrel layer and a pattern layer disposed over a dielectric stack. Patterning the structure to form mandrels in the mandrel layer and disposing a spacer layer over the mandrels. Etching the spacer layer to form spacers disposed on sidewalls of the mandrels. The spacers and mandrels defining beta and gamma regions. A beta region includes a beta block mask portion and a gamma region includes a gamma block mask portion of the pattern layer. The method also includes etching a beta pillar over the beta block mask portion and etching a gamma pillar over the gamma block mask portion. The method also includes etching the structure to form a pattern in the pattern layer, the pattern including the gamma and beta block mask portions.
Abstract:
At least one method disclosed herein involves creating an overall pattern layout for an integrated circuit that is to be manufactured using a self-aligned double patterning (SADP) process, forming a first metal feature having a first width on a first track of a metal layer using the SADP process, forming a second metal feature having a second width on a second track of the metal layer. The second track is adjacent to the first track. The method also includes forming an electrical connection between the first metal feature and the second metal feature to provide an effectively single metal pattern having a third width that is the sum of the first and second widths, rendering the first and second features decomposable using the SADP process; and decomposing the overall pattern layout with the first and second metal features into a mandrel mask pattern and a block mask pattern.
Abstract:
A method and apparatus for an assisted metal routing is disclosed. Embodiments may include: determining an initial block mask having a first inner vertex for forming a metal routing layer of an integrated circuit (IC); adding an assistant metal portion within the metal routing layer; and determining a modified block mask based on the assistant metal portion for forming the metal routing layer.
Abstract:
Methodologies and an apparatus enabling a generation of color undeterminable polygons in IC designs are disclosed. Embodiments include: determining a plurality of first routes extending horizontally in an IC design, each of the plurality of first routes being placed on one of a plurality of equally spaced vertical positions of the IC design; determining whether a second route overlaps one of the vertical positions of the plurality of equally spaced vertical positions; and selecting a design rule for the second route based on the determination of whether the second route overlaps.
Abstract:
A methodology for a modified cell architecture and the resulting devices are disclosed. Embodiments may include determining a first vertical track spacing for a plurality of first routes for an integrated circuit (IC) design, each of the plurality of first routes having a first width, determining a second vertical track spacing for a second route for the IC design, the second route having a second width, and designating a cell vertical dimension for the IC design based on the first and second vertical track spacings.
Abstract:
One illustrative method disclosed herein includes, among other things, patterning a hard mask layer using three patterned photoresist etch masks, wherein a first feature corresponding to a portion, but not all, of a cross-coupling gate contact structure is present in a first of the three patterned photoresist etch masks and a second feature corresponding to a portion, but not all, of the cross-coupling gate contact structure is present in a second or a third of the three patterned photoresist etch masks, patterning a layer of insulating material using the patterned hard mask layer as an etch mask, and forming a cross-coupling gate contact structure in a trench in the layer of insulating material.
Abstract:
A design methodology for routing for an integrated circuit is disclosed. The method includes placement of cells having double diffusion breaks, which create an extended intercell region. Metal layer prohibit zones are defined to prohibit any M1 structures in the prohibit zones. Metal layer allow zones are placed adjacent to outer metal lines, and jogs are formed in the metal layer allow zones. Vias and viabars may then be applied on the jogs.
Abstract:
A method and apparatus for insertion of a via improving a manufacturability of a resulting device while ensuring compliance with DRC rules are disclosed. Embodiments include: determining a layer of a substrate of an IC design having a first via and a plurality of routes, the plurality of routes extending horizontally on the substrate and placed on one of a plurality of equally spaced vertical positions; comparing a region of the layer extending vertically between a first set of the plurality of routes and extending horizontally between a second set of the plurality of the routes with one or more threshold values, the region being adjacent to the first via and being separated from the plurality of routes; and inserting a second via based on the comparison.