Abstract:
A process, for joining workpieces using hybrid mechanical connector-resistance welding. The process in some embodiments includes introducing a conductive fluid to an interface between the workpieces. The process also includes inserting at least one mechanical conductive connector into at least one of the workpieces so that the connector reaches the interface having the conductive fluid therein. The process in some embodiments includes further applying energy for welding to the at least one mechanical conductive connector so that the energy passes, through the connector, to the conductive fluid and heat is generated in the workpieces at the interface, thereby melting the workpieces and forming a weld joint connecting the workpieces.
Abstract:
One or more ductile metal inserts may be selectively incorporated into articles of limited ductility, including metal castings and molded polymers. The inserts are positioned at joint locations for joining of the article to other articles using self-piercing riveting (SPR). The inserts are of suitable ductility, thickness and strength to receive and retain self-piercing rivets and enable a strong riveted joint between the article and a second article. In an embodiment the articles are magnesium alloy castings formed by any of sand casting, die casting and semi-solid metal casting. The chemical composition of the insert may be informed by the anticipated corrosive environment of the joint and the casting temperature of the magnesium alloy. For magnesium alloy castings which may be exposed to corrosive environments, aluminum alloy inserts are preferred.
Abstract:
A system for forming a weld nugget in a metal work piece includes a power supply, actuator, electrodes, and controller. The actuator delivers a variable electrode force to the work piece in response to a force command. The controller executes a method by transmitting a welding current command to the power supply to cause the power supply to output a welding current to the electrodes. The controller transmits the force command to the actuator to apply the variable electrode force, via the electrodes, to the work piece at a first force level. The variable electrode force increases from a second force level immediately upon conclusion of a first duration to minimize weld expulsion. The second force level commences at a point in time in the dynamic resistance profile at which a dynamic resistance value of the work piece decreases at a threshold rate during formation of the weld nugget.
Abstract:
A fastening assembly includes a panel defining an aperture, a fastener having a head, a shaft portion extending from the head, and a recess formed in the head, and a sacrificial primary anode insert disposed in the recess. The sacrificial primary anode insert is configured to corrode at a rate faster than a corrosion rate of the fastener.
Abstract:
A two-part mechanical fastener comprising an elongated body with a bore slidably carrying a mandrel adapted to interferingly engage the body is described. The fastener body has one or more protuberances on its exterior surface. In an aspect, the protuberances form a thread. The fastener is adapted to form an opening in, and penetrate, a stack of two or more workpieces. To secure the workpieces in the workpiece stack and form a robust joint, the fastener body is deformed by the mandrel, expanding the body, so that a body end engages a surface of the workpiece stack and the one or more protuberances are brought into engagement with the walls of the opening. Methods of using such a fastener to secure non-ferrous or polymer-based sheet-like workpieces to one another are disclosed.
Abstract:
A method of inspection and repair of a joint in an assembly. The joint is formed by a first work piece and a second work piece. An adhesive placed between the first and second work pieces to define the joint. The assembly includes an ultrasonic welding device including an ultrasonic horn configured to deliver ultrasonic energy to the joint. A controller is operatively connected to the ultrasonic welding device. The controller includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method of inspecting and repairing the adhesive-bonded joint. The controller is programmed to deliver a first ultrasonic pulse (P1) to the joint, via the ultrasonic welding device, and determine an adhesive coverage (AC) based at least partially on the first ultrasonic pulse (P1).
Abstract:
One or more ductile metal inserts may be selectively incorporated into articles of limited ductility, including metal castings and molded polymers. The inserts are positioned at joint locations for joining of the article to other articles using self-piercing riveting (SPR). The inserts are of suitable ductility, thickness and strength to receive and retain self-piercing rivets and enable a strong riveted joint between the article and a second article. In an embodiment the articles are magnesium alloy castings formed by any of sand casting, die casting and semi-solid metal casting. The chemical composition of the insert may be informed by the anticipated corrosive environment of the joint and the casting temperature of the magnesium alloy. For magnesium alloy castings which may be exposed to corrosive environments, aluminum alloy inserts are preferred.
Abstract:
A system for forming a weld nugget in a metal work piece includes a power supply, actuator, electrodes, and controller. The actuator delivers a variable electrode force to the work piece in response to a force command. The controller executes a method by transmitting a welding current command to the power supply to cause the power supply to output a welding current to the electrodes. The controller transmits the force command to the actuator to apply the variable electrode force, via the electrodes, to the work piece at a first force level. The variable electrode force increases from a second force level immediately upon conclusion of a first duration to minimize weld expulsion. The second force level commences at a point in time in the dynamic resistance profile at which a dynamic resistance value of the work piece decreases at a threshold rate during formation of the weld nugget.
Abstract:
A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy workpiece together includes several steps. In one step a workpiece stack-up is provided. The workpiece stack-up includes a steel workpiece and an aluminum or aluminum alloy workpiece. Another step involves providing a first welding electrode that confronts the aluminum workpiece, and providing a second welding electrode that confronts the steel workpiece. The first welding electrode has an electrode body and an insert that functions to limit or eliminate heat flux into the electrode body. Other steps of the method involve bringing the first and second welding electrodes into contact with opposite sides of the workpiece stack-up and resistance spot welding the stack-up.
Abstract:
A resistance spot welding system can join two polymeric workpieces and includes a power supply. The power supply has a positive terminal and a negative terminal. The resistance spot welding system further includes a welding electrode assembly electrically connected to the power supply. The welding electrode assembly includes a housing, a first electrically conductive pin and a second electrically conductive pin. The first and second electrically conductive pins both protrude from the housing. The first electrically conductive pin is electrically connected to the positive terminal of the power supply, and the second electrically conductive pin is electrically connected to the negative terminal of the power supply. The second electrically conductive material is electrically insulated from the first electrically conductive pin. The first and second electrically conductive pins are at least partly made of a material having a hardness ranging between 50 HRC and 70 HRC.