Abstract:
A vehicle includes a system operating a method of controlling a temperature at a battery cell of the vehicle. The system includes the battery cell, a temperature sensor and a processor. The battery cell has a tab for flow of current to and from the battery cell. The temperature sensor is configured to measure a cell temperature of the battery cell at a location away from the tab. The processor is configured to predict a tab temperature from the cell temperature, and control a power supplied to a load from the battery cell based on the tab temperature.
Abstract:
An electric propulsion system for a mobile platform includes a battery system connected to positive and negative bus rails, an accessory load having a rotary electric machine, a traction power inverter module (“TPIM”), and an accessory load, switches configured to transition the battery modules to a series-connected (“S-connected”) configuration during a direct current fast-charging (“DCFC”) operation of the battery system, and a controller. When battery modules of the battery system are connected in series during a direct current fast-charging (“DCFC”) operation, the controller executes a diagnostic method to determine bus rail voltages on the positive and negative bus rails and a mid-bus voltage, identifies a diagnosed electrical condition of the electric propulsion system by comparing the voltages to expected values or ranges, and executes a control action in response to the diagnosed electrical condition.
Abstract:
Presented are traction battery pack balancing systems, methods for making/operating such systems, and multi-pack, electric-drive motor vehicles with battery pack balancing capabilities. A method for controlling operation of a motor vehicle includes a vehicle controller: receiving a key-off command signal to power off the motor vehicle; determining if a difference between corresponding electrical characteristics of first and second traction battery packs is greater than a calibrated characteristic differential threshold; determining if a difference between corresponding battery pack capacities of the first and second traction battery packs is greater than a calibrated capacity differential threshold; and, responsive to the characteristic difference not being greater than the calibrated characteristic differential threshold and the capacity difference being greater than the calibrated capacity differential threshold, transmitting a key-on command signal to power on the motor vehicle, and a pack balancing command signal to reduce the capacity difference to below the calibrated capacity differential threshold.
Abstract:
An electrical system includes cables, a DC charge connector, first and second battery modules, a splice device, and a controller. Each battery module has first, second, third, and fourth electrical connectors receiving a respective one of the cables. The battery modules are connected to each other via the cables, and further have first, second, third, and fourth switches that connect battery cell strings to one or more connectors. The charge connector is connected to one of the cables between the first electrical connectors. The splice device connects the charge connector to the first connector of the first battery module and to a pair of the cables. A charging current may be split between the battery modules. The controller selectively establishes parallel charging, parallel drive, and separate drive and charging modes for each battery module. The system may have an independent drive mode.
Abstract:
A system includes a target generating module, a model predictive control (MPC) module, and an actuator module. The target generating module generates a target value for an actuator of an engine. The MPC module generates a set of possible adjustments to the target value and predicts an operating parameter for the set of possible adjustments. The predicted operating parameter includes an emission level and/or an operating parameter of an exhaust system. The MPC module determines a cost for the set of possible adjustments and selects the set of possible adjustments from multiple sets of possible adjustments based on the cost. The MPC module determines whether the predicted operating parameter for the selected set satisfies a constraint and adjusts the target value using the possible adjustments of the selected set when the predicted operating parameter satisfies the constraint. The actuator module controls the actuator based on the target value as adjusted.
Abstract:
An internal combustion engine fluidly coupled to an exhaust aftertreatment system includes a particulate filter device, a first selective catalytic reduction device disposed upstream relative to a second selective catalytic reduction device, and an injection system disposed to inject a reductant into the exhaust gas feedstream upstream relative to the first selective catalytic reduction device. A method for controlling the internal combustion engine includes monitoring engine operation, and determining an amount of particulate matter stored on the particulate filter based thereon. An amount of reductant stored on the second selective catalytic reduction device and operating conditions associated with the exhaust aftertreatment system are also determined. A process to regenerate the particulate filter is executed only when the amount of reductant stored on the second selective catalytic reduction device is greater than a minimum threshold and the operating conditions are conducive to regenerating of the particulate filter.
Abstract:
An internal combustion engine fluidly coupled to an exhaust aftertreatment system includes a particulate filter device, a first selective catalytic reduction device disposed upstream relative to a second selective catalytic reduction device, and an injection system disposed to inject a reductant into the exhaust gas feedstream upstream relative to the first selective catalytic reduction device. A method for controlling the internal combustion engine includes monitoring engine operation, and determining an amount of particulate matter stored on the particulate filter based thereon. An amount of reductant stored on the second selective catalytic reduction device and operating conditions associated with the exhaust aftertreatment system are also determined. A process to regenerate the particulate filter is executed only when the amount of reductant stored on the second selective catalytic reduction device is greater than a minimum threshold and the operating conditions are conducive to regenerating of the particulate filter.
Abstract:
An internal combustion engine is described in conjunction with a method for dynamically determining a mass flow rate of nitrogen oxides (NOx) for its exhaust gas feedstream. The method includes determining a present engine operating point and determining a reference NOx content for a reference engine operating point. A combustion chemical reaction rate is determined based upon the present engine operating point and the reference engine operating point. A NOx content in the exhaust gas feedstream is dynamically determined during operation of the internal combustion engine based upon the reference NOx content, the combustion chemical reaction rate and a combustion mixing rate constant.
Abstract:
An internal combustion engine is described in conjunction with a method for dynamically determining a mass flow rate of nitrogen oxides (NOx) for its exhaust gas feedstream. The method includes determining a present engine operating point and determining a reference NOx content for a reference engine operating point. A combustion chemical reaction rate is determined based upon the present engine operating point and the reference engine operating point. A NOx content in the exhaust gas feedstream is dynamically determined during operation of the internal combustion engine based upon the reference NOx content, the combustion chemical reaction rate and a combustion mixing rate constant.
Abstract:
A multi-cell rechargeable energy storage system has battery cells disposed in an enclosure, and arranged in cell modules. Collectors are arranged to electrically connect the battery cells arranged in the cell modules. An electric power bus is arranged in a spine, and terminates at positive and negative terminals. First busbars, a second busbar, and end collectors electrically connect the cell modules in series between the positive terminal and the second terminal. Cell monitoring controllers are arranged to monitor the cell modules. A potting compound is arranged to encapsulate only an upper portion of the battery cells. A thermal management system including first and second fluidic manifolds are fluidly coupled to longitudinal heat exchange plates to thermally couple to the battery cells.