摘要:
Solar cells having a plurality of sub-cells coupled by metallization structures having a metal bridge, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, the metal bridge can provide structural support and provide for an electrical connection between a first contact pad and a first busbar. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between and where the metal bridge can be perpendicular to the groove. The solar cell can include a first contact pad adjacent to a second contact pad.
摘要:
Approaches for foil-based metallization of solar cells and the resulting solar cells are described. For example, a method of fabricating a solar cell involves locating a metal foil above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate. The method also involves laser welding the metal foil to the alternating N-type and P-type semiconductor regions. The method also involves patterning the metal foil by laser ablating through at least a portion of the metal foil at regions in alignment with locations between the alternating N-type and P-type semiconductor regions. The laser welding and the patterning are performed at the same time.
摘要:
Approaches for fabricating spot-welded and adhesive bonded interconnects for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. An interconnect structure is electrically connected to the conductive contact structure. The interconnect structure includes a plurality of protrusions in contact with the conductive contact structure. Each of the plurality of protrusions is spot-welded to the conductive contact structure and is surrounded by an adhesive material.
摘要:
A solar cell can include a conductive foil having a first portion with a first yield strength coupled to a semiconductor region of the solar cell. The solar cell can be interconnected with another solar cell via an interconnect structure that includes a second portion of the conductive foil, with the interconnect structure having a second yield strength greater than the first yield strength.
摘要:
Approaches for fabricating foil-based metallization of solar cells based on a leave-in etch mask, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes metal foil portions in alignment with corresponding ones of the alternating N-type and P-type semiconductor regions. A patterned wet etchant-resistant polymer layer is disposed on the conductive contact structure. Portions of the patterned wet etchant-resistant polymer layer are disposed on and in alignment with the metal foil portions.
摘要:
Solar cells can include a plurality of sub-cells that include a singulated and physically separated semiconductor portion such that adjacent ones of the singulated and physically separated semiconductor portions can have a groove therebetween. The solar cells can include a metallization structure that couples ones of the plurality of sub-cells. An interconnect structure can couple adjacent ones of the solar cells.
摘要:
A solar cell can include a built-in bypass diode. In one embodiment, the solar cell can include an active region disposed in or above a first portion of a substrate and a bypass diode disposed in or above a second portion of the substrate. The first and second portions of the substrate can be physically separated with a groove. A metallization structure can couple the active region to the bypass diode.
摘要:
Foil trim approaches for the foil-based metallization of solar cells and the resulting solar cells are described. For example, a method involves attaching a metal foil sheet to a metallized surface of an underlying supported wafer to provide a unified pairing of the metal foil sheet and the wafer. Subsequent to attaching the metal foil sheet, a portion of the metal foil sheet is laser scribed from above to form a groove in the metal foil sheet. Subsequent to laser scribing the metal foil sheet, the unified pairing of the metal foil sheet and the wafer is rotated to provide the metal sheet below the wafer. Subsequent to the rotating, the unified pairing of the metal foil sheet and the wafer is placed on a chuck with the metal sheet below the wafer. The metal foil sheet is torn at least along the groove to trim the metal foil sheet.
摘要:
Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a plurality of alternating N-type and P-type regions in or above a substrate. The method also involves forming a metal seed layer on the plurality of alternating N-type and P-type regions. The method also involves patterning at least a portion of the metal seed layer at regions in alignment with locations between the alternating N-type and P-type regions. The method also involves, subsequent to the patterning, etching to form trenches at the locations between the alternating N-type and P-type regions, isolating the alternating N-type and P-type regions from one another.
摘要:
Solar cells having a plurality of sub-cells coupled by metallization structures, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, a solar cell, includes a plurality of sub-cells, each of the sub-cells having a singulated and physically separated semiconductor substrate portion. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between. The solar cell also includes a monolithic metallization structure. A portion of the monolithic metallization structure couples ones of the plurality of sub-cells. The groove between adjacent ones of the singulated and physically separated semiconductor substrate portions exposes a portion of the monolithic metallization structure.