摘要:
Embodiments of a manufacturing process flow for producing standalone memory devices that can achieve bit cell sizes on the order of 4F2 or 5F2, and that can be applied to common source/drain, separate source/drain, or common source only or common drain only transistor arrays. Active area and word line patterns are formed as perpendicularly-arranged straight lines on a Silicon-on-Insulator substrate. The intersections of the active area and spaces between word lines define contact areas for the connection of vias and metal line layers. Insulative spacers are used to provide an etch mask pattern that allows the selective etching of contact areas as a series of linear trenches, thus facilitating straight line lithography techniques. Embodiments of the manufacturing process remove first layer metal (metal-1) islands and form elongated vias, in a succession of processing steps to build dense memory arrays.
摘要:
A semiconductor device, such as a memory device or radiation detector, is disclosed, in which data storage cells are formed on a substrate. Each of the data storage cells includes a field effect transistor having a source, drain, and gate, and a body arranged between the source and drain for storing electrical charge generated in the body. The magnitude of the net electrical charge in the body can be adjusted by input signals applied to the transistor, and the adjustment of the net electrical charge by the input signals can be at least partially cancelled by applying electrical voltage signals between the gate and the drain and between the source and the drain.
摘要:
A data storage device such as a DRAM memory having a plurality of data storage cells 10 is disclosed. Each data storage cell 10 has a physical parameter which varies with time and represents one of two binary logic states. A selection circuit 16, writing circuits 18 and a refreshing circuit 22 apply input signals to the data storage cells to reverse the variation of the physical parameter with time of at least those cells representing one of the binary logic states by causing a different variation in the physical parameter of cells in one of said states than in the other.
摘要:
A semiconductor device, such as a memory device or radiation detector, is disclosed, in which data storage cells are formed on a substrate 13. Each of the data storage cells includes a field effect transistor having a source 18, drain 22 and gate 28, and a body arranged between the source and drain for storing electrical charge generated in the body. The magnitude of the net electrical charge in the body 22 can be adjusted by input signals applied to the transistor, and the adjustment of the net electrical charge by the input signals can be at least partially cancelled by applying electrical voltage signals between the gate 28 and the drain 22 and between the source 18 and the drain 22.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a memory cell, architecture, and/or array and/or technique of writing or programming data into the memory cell (for example, a technique to write or program a logic low or State “0” in a memory cell employing an electrically floating body transistor. In this regard, the present invention programs a logic low or State “0” in the memory cell while the electrically floating body transistor is in the “OFF” state or substantially “OFF” state (for example, when the device has no (or practically no) channel and/or channel current between the source and drain). In this way, the memory cell may be programmed whereby there is little to no current/power consumption by the electrically floating body transistor and/or from memory array having a plurality of electrically floating body transistors.
摘要:
A semiconductor device comprised of a substantially conformal layer of titanium silicon oxide deposited on a semiconductor substrate. The layer of titanium silicon oxide is substantially free of chlorine related impurities. The layer of titanium silicon oxide may have a ratio of silicon to titanium from about 0.1 to about 1.9. The layer of titanium silicon oxide may have a dielectric constant from about 10 to about 30, and a thickness from about 15 angstroms to about 500 angstroms.
摘要:
In a semiconductor fabrication method for forming a transistor structure upon a semiconductor substrate, a nitride layer is also formed over the semiconductor substrate. A gate oxide layer is formed over a region of the semiconductor substrate. The gate oxide layer has a relatively thinner oxide region over the nitride layer and a relatively thicker oxide region over the substrate adjacent the nitride layer. A transistor gate is formed extending over the relatively thinner oxide region and over the relatively thicker oxide region. The transistor thus formed is therefore asymmetric. A first transistor active region is formed in the vicinity of the relatively thicker oxide region and a second transistor active region is formed in the vicinity of the relatively thinner oxide region. The nitride layer can be formed by rapid thermal nitridization of the semiconductor substrate. The relatively thinner oxide region can be one-half as thick as the relatively thinner oxide region. The surface of the semiconductor substrate can be curved in the vicinity of the drain of the asymmetric transistor in order to permit the momentum of the charge carriers to facilitate penetration of the charge carriers into the gate.
摘要:
A silicon nitride deposition method includes providing a substrate surface including one or more component surfaces. At least a monolayer of silicon is predeposited on the one or more component surfaces of the substrate surface resulting in a substantially native oxide free uniform predeposited silicon substrate surface. Thereafter, a silicon nitride layer is deposited on the predeposited silicon substrate surface after the silicon predeposition. Further, another silicon nitride deposition method includes providing a silicon based substrate surface. The substrate surface is nitridated in an atmosphere of dimethylhydrazine, and thereafter, a silicon nitride layer is deposited on the nitridated surface. The nitridation of the substrate surface results in a thickness less than three monolayers of silicon nitride.
摘要:
An etch process for increasing the alignment tolerances between capacitor components and an adjacent contact corridor in Dynamic Random Access Memories. The etch process is implemented in a capacitor structure formed over a semiconductor substrate. The capacitor structure includes a first conductor, a dielectric layer on the first conductor and a second conductor on the dielectric layer. The second conductor has a horizontal region laterally adjacent to and extending away from the first conductor. The etch process comprises the steps of: (a) forming a layer of patterned photoresist over the second conductor, the photoresist being patterned to expose a portion of the horizontal region of the second conductor at a desired location of a contact corridor above a source/drain region in the substrate; (b) using the photoresist as an etch mask, anisotropically etching away the exposed portions of the horizontal region of the second conductor; and (c) using the photoresist again as an etch mask, isotropically etching away substantially all of the remaining portions of the horizontal region of the second conductor and thereby enlarging the area available for locating the contact corridor. Alternatively, the horizontal region of the second conductor is removed using a single isotropic etch.
摘要:
The present invention includes a method of forming semiconductor oxide layers and, in particular, gate oxide layers, in MOS semiconductor devices formed on silicon substrates. The method includes the steps of forming a first silicon oxide sublayer on the silicon substrate in an atmosphere including primarily oxygen, and forming a second silicon oxide sublayer over the first sublayer in an atmosphere including primarily nitrous oxide (N.sub.2 O). Preferably, the first and second sublayers represent 80 percent and 20 percent, respectively, of the silicon oxide layer.