摘要:
A parking area detecting method includes generating a top view image by capturing images of surroundings of a vehicle, detecting a first directional parking line from the top view image, detecting a second directional parking line having a direction different from a direction of the first directional parking line from the top view image, and detecting a parking area by combining the first directional parking line and the second directional parking line.
摘要:
An apparatus and a method for tracing a parking-lot is provided that includes a controller configured to recognize at least one parking-lot from a previous image frame which photographed a surrounding of a vehicle and extract a template according to a type of a parking-lot line of the recognized parking-lot. In addition, the controller is configured to generate a template transformed based on a position information of the parking-lot and calculate similarity by comparing a template generated from a previous image frame with a parking-lot line recognized from a current image frame. A position of a parking-lot is determined according to the calculated similarity and the controller is configured to correct the template based on an information of a parking-lot line extracted from the determined position.
摘要:
A parking area tracking method includes: creating a top view image by capturing surroundings of a vehicle; setting a template by detecting a parking area in the top view image; detecting a location of a pillar in the top view image; detecting a region obstructed by the pillar from the parking area in which the template is set; and changing the shape of the template according to the obstructed region. A parking area tracking apparatus includes an imaging unit with a plurality of cameras for recording images around the vehicle, and a control unit for carrying out the steps of the parking area tracking method.
摘要:
Disclosed herein is a method for recognizing a parking space line marking for a vehicle, including: detecting, by a processor, a plurality of parking spaces from a portion of a parking space line marking in an image; calculating, by the processor, an overlap coefficient representing a degree of overlapping between the detected parking spaces; selecting, by the processor, a parking space having a largest brightness coefficient as a final parking space by determining overlap when the overlap coefficient has a predetermined magnitude and comparing the brightness degrees of the overlapped parking spaces.
摘要:
An automatic parking system includes a sensor system measuring whether there is a parking section line and positions of surrounding vehicles, and a controller configured to analyze data sensed by the sensor system to calculate parking areas around a subject vehicle, calculate a range allowing generation of a moving path based on the parking areas, provide a moving path range for a parking type that is selected among the moving path ranges provided for the at least two parking types, and an optimal parking area for the selected moving path range, and automatically park the subject vehicle in the optimal parking area.
摘要:
A smartphone holding device of a vehicle includes: a holder configured to hold a smartphone; a main body configured to receive the holder such that the holder is extendable from the main body; an actuator configured to generate a drive force causing vertical movement of the holder; and a vertical feeding member installed between the actuator and the holder and configured to vertically move the holder by the drive force from the actuator.
摘要:
Disclosed is a system and method for recognizing a parking space line marking for a vehicle. In particular, a corner capturing process is configured to capture an angled corner in an image including the parking space line marking, and a cross capturing process is configured to capture a cross point by combining adjacent corners among the captured corners. A space capturing process captures a space which is an end periphery of the parking space line marking by combining the captured cross points. As a result of the above processes, a type selecting process can then select a type of the parking space line marking from the captured space, and a final selection process may select a final space based on the selected type.
摘要:
An automatic parking system is provided. The automatic parking system includes a camera processor that acquires images around a subject vehicle, converts the acquired images into external images and synthesizes the external images. A sensor processor measured spaced distances between the subject vehicle and surrounding vehicles. A parking space recognizing unit periodically receives the spaced distances and the external images and comparing the consecutive external images with the spaced distances using an image recognition technology to recognize parking areas. A controller calculates a moving path between a current position of the subject vehicle and an optimal parking area and operates the subject vehicle based on the moving path.
摘要:
A motor driven air vent device for a vehicle can perform not only left/right angular rotation operation of a vertical wing for adjusting a left/right-directional airflow direction of air discharged indoors but also an opening/closing operation of a damper for interrupting or allowing an indoor discharge of air using a link bar for performing a straight line motion to the left or right thereof by driving a motor and a cam plate for angularly rotating by the link bar, etc. in a motor driven manner.
摘要:
An image conversion device is provided. The device includes a driving environment recognition unit that has a camera acquiring a base image of areas behind and to the side of a subject vehicle and a sensor sensing a driving environment behind and to the side of the subject vehicle. A display unit displays the base image and a navigation unit provides information regarding a location of the subject vehicle. A controller determines whether a blind spot is created in the driving environment based on information acquired from the driving environment recognition unit and the navigation unit, converts the base image into an image including the blind spot to generate the converted image, and operates the display unit to display the converted image.