摘要:
Metrology systems and methods for lithography processes are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a mask having a plurality of corner rounding test patterns formed thereon. A first semiconductor device is provided, and a layer of photosensitive material of the first semiconductor device is patterned with a plurality of corner rounding test features using the mask and a lithography process. An amount of corner rounding of the lithography process is measured by analyzing the plurality of corner rounding test features relative to other of the plurality of corner rounding test features formed on the layer of photosensitive material of the semiconductor device. The lithography process or the mask is altered in response to the amount of corner rounding measured, and a second semiconductor device is provided. The second semiconductor device is affected using the altered lithography process or the altered mask.
摘要:
Various illustrative embodiments of methods for manufacturing a semiconductor device are described. These methods may include, for example, forming a first polysilicon layer above a substrate, wherein the first polysilicon layer comprises a doped portion, and forming a second polysilicon layer over a surface of the first polysilicon layer. Also, various illustrative embodiments of semiconductor devices are described that may be manufactured such as by the various methods described herein.
摘要:
Lithography masks and methods of manufacture thereof are disclosed. For example, a method of manufacturing a lithography mask includes forming a stack over a substrate. The stack includes bottom attenuated phase shift material layers, intermediate opaque material layers, and finally top resist layers. The method further includes patterning the stack and then trimming the resist layers to uncover a portion of the opaque material layers. The uncovered opaque material layers are subsequently etched followed by removal of any remaining resist layers.
摘要:
Integrated circuit transistors may be fabricated by simultaneously removing a photoresist layer on a first active area of an integrated circuit substrate and a carbon-containing layer on a second active area of the integrated circuit substrate, to expose a nitride stress-generating layer on the second active area. A single mask may be used to define the second active area for removal of the photoresist layer on the first active area and for implanting source/drain regions into the second active area.
摘要:
Methods of forming integrated circuit devices include steps to selectively widen portions of a mask pattern extending adjacent an outer edge of a semiconductor wafer. These steps to selectively widen portions of the mask pattern are performed so that more uniform center-to-edge critical dimensions (CD) can be achieved when the mask pattern is used to support photolithographically patterning of underlying layers (e.g., insulating layers, antireflective coatings, etc.).
摘要:
Integrated circuit transistors may be fabricated by simultaneously removing a photoresist layer on a first active area of an integrated circuit substrate and a carbon-containing layer on a second active area of the integrated circuit substrate, to expose a nitride stress-generating layer on the second active area. A single mask may be used to define the second active area for removal of the photoresist layer on the first active area and for implanting source/drain regions into the second active area.
摘要:
The prevention of active area loss in the STI model is disclosed which results in an improved device performance in devices manufactured according to the process flow. The process generally shared among the multiple various embodiments inverts the current conventional STI structure towards a process flow where an insulator is patterned with tapered trenches. A segregation layer is formed beneath the surface of the insulator in the tapered trenches. The tapered trenches are then filled with a semiconductor material which is further processed to create a number of active devices. Therefore, the active devices are created in patterned dielectric instead of the STI being created in the semiconductor substrate of the active devices.
摘要:
Plasma encapsulation for electronic and microelectronic components such as OLEDs. The invention relates to a plasma encapsulation for electronic and microelectronic components such as OLEDs. However, a conventional standard plasma coating process is not used; instead, an especially gentle plasma coating process which does not cause any damage to sensitive components such as an OLED is used, such as the pulsed method or the “remote” or “after glow method.”
摘要:
The prevention of active area loss in the STI model is disclosed which results in an improved device performance in devices manufactured according to the process flow. The process generally shared among the multiple various embodiments inverts the current conventional STI structure towards a process flow where an insulator is patterned with tapered trenches. A segregation layer is formed beneath the surface of the insulator in the tapered trenches. The tapered trenches are then filled with a semiconductor material which is further processed to create a number of active devices. Therefore, the active devices are created in patterned dielectric instead of the STI being created in the semiconductor substrate of the active devices.
摘要:
A process of using a-C:H layer as a hardmask material with tunable etch resistivity in a RIE process that alleviates the addition of a layer forming gas to the etchant when making a semiconductor device, comprising: a) providing a semiconductor substrate; b) forming a hardmask of amorphous carbon-hydrogen (a-C:H) layer by plasma enhancement over the semiconductor substrate; c) forming an opening in the hardmask layer to form an exposed surface portion of the hardmask layer; and d) etching the exposed surface portion of the hardmask layer without the addition of a layer forming gas using RIE to form a trench feature with sufficient masking and side wall protection.