摘要:
An organic/inorganic hybrid film represented by SiCxHyOz (x>0, y≧0, z>0) is plasma-etched with an etching gas containing fluorine, carbon and nitrogen. During the etching, a carbon component is eliminated from the surface portion of the organic/inorganic hybrid film due to the existence of the nitrogen in the etching gas, to thereby reform the surface portion. The reformed surface portion is nicely plasma-etched with the etching gas containing fluorine and carbon.
摘要:
The invention provides a preparation process of organic-group-modified zeolite fine particles excellent in stability of particle size and to be used for electronic materials or the like. The preparation process comprises a first step of obtaining a liquid containing zeolite seed crystals having a particle size of 80 nm or less which are formed in the presence of a structure directing agent, a second step of adding an organic-group-containing hydrolyzable silane compound to the liquid obtained by the first step, and a third step of maturing the liquid of the second step at temperature higher than that of the first step. A dispersion liquid of zeolite fine particles obtained by the process.
摘要:
In a semiconductor device including: an insulating film (6) formed over a substrate (1); a buried metal interconnect (10) formed in the insulating film (6); and a barrier metal film (A1) formed between the insulating film (6) and the metal interconnect (10), the barrier metal film (A1) includes a metal oxide film (7), a metal compound film (8) and a metal film (9) stacked in this order from a side in which the insulating film (6) exists to a side in which the metal interconnect (10) exists. Elastic modulus of the metal compound film (8) is larger than that of the metal oxide film (7).
摘要:
In the invention, a silica sol prepared by hydrolyzing and condensing a silane compound represented by the following formula: Si(OR1)4 or R2nSi(OR3)4-n wherein R1s, R2(s) and R3(s) may be the same or different when a plurality of them are contained in the molecule and each independently represents a linear or branched C1-4 alkyl group in the presence of a hydrophilic basic catalyst and a hydrophobic basic catalyst is used for a conventional porous-film forming composition.
摘要:
A substance including tungsten and carbon is etched by using plasma. The plasma is generated from a mixed gas of a gas including a fluorine atom and a gas including a CN bond and a hydrogen atom.
摘要:
Provided is an organic silicon oxide fine particle capable of satisfying an expected dielectric constant and mechanical strength and having excellent chemical stability for obtaining a high-performance porous insulating film. More specifically, provided is an organic silicon oxide fine particle comprising a core comprising an inorganic silicon oxide or a first organic silicon oxide containing an organic group having a carbon atom directly attached to a silicon atom and, and a shell on or above an outer circumference of the core, the shell comprising a second organic silicon oxide different from the first organic silicon oxide which the second organic silicon has been formed by hydrolysis and condensation, in the presence of a basic catalyst, of a shell-forming component comprising an organic-group-containing hydrolyzable silane containing an organic group having a carbon atom directly attached to a silicon atom or a mixture of the organic-group-containing hydrolyzable silane and an organic-group-free hydrolyzable silane not having the organic group, wherein a ratio [C]/[Si] is 0 or greater but less than 1 in the core and 1 or greater 1 in the shell wherein [C] represents the number of all the carbon atoms and [Si] represents the number of all the silicon atoms.
摘要:
A material for forming an insulating film with low dielectric constant of this invention is a solution including a fine particle principally composed of a silicon atom and an oxygen atom and having a large number of pores, a resin and a solvent.
摘要:
Provided is a method for preparing a siloxane polymer by hydrolysis and condensation reactions of a hydrolyzable silane compound, which has a step of preparing a salt of a silsesquioxane cage compound represented by the following formula (1): (SiO1.5—O)nn−X+n (1) wherein, X represents NR4, Rs may be the same or different and each represents a linear or branched C1-4 alkyl group and n is an integer from 6 to 24 and a step of hydrolyzing and condensing the hydrolyzable silane compound with the salt of a silsesquioxane cage compound.