Abstract:
A semiconductor memory includes a semiconductor substrate, a buried insulating film formed on a part of an upper surface of the semiconductor substrate, and a semiconductor layer formed on another part of the upper surface of the semiconductor substrate. Each of the memory cell transistors comprises a first-conductivity-type source region, a first-conductivity-type drain region, and a first-conductivity-type channel region arranged in the semiconductor layer in the column direction, and a gate portion formed on a side surface of the channel region in the row direction.
Abstract:
According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.
Abstract:
In one embodiment, a solid-state imaging device includes: an imaging optical system including: a first and second surfaces facing each other; a flat reflector provided on the first surface and having an aperture in an outer circumferential portion; and a plurality of reflectors provided on the second surface and located in a plurality of ring-like areas, each of the reflectors being inclined in a radial direction, the reflectors having different diameters from one another; and an imaging element module including: an imaging element including an imaging area having a plurality of pixel blocks each including a plurality of pixels, and receiving and converting light from the imaging optical system into image data; a visible light transmission substrate provided between the imaging optical system and the imaging element; a microlens array provided on a surface of the visible light transmission substrate on the imaging element side; and an image processing unit processing the image data obtained by the imaging element.
Abstract:
It is possible to quickly and readily determine the location of an object. A solid-state imaging element according to an embodiment includes: at least two infrared detectors formed on a semiconductor substrate; an electric interconnect configured to connect the at least two infrared detectors in series; and a comparator unit configured to compare an intermediate voltage of the electric interconnect connecting the infrared detectors in series, with a predetermined reference voltage.
Abstract:
An infrared solid-state image sensor comprises: a pixel area comprising a sensitive pixel area where infrared detection pixels are arranged in a matrix form to detect incident infrared rays on the semiconductor substrate and a reference pixel area where reference pixels are provided, each of the infrared detection pixels comprising a thermoelectric conversion part, the thermoelectric conversion part comprising an infrared absorption film to absorb the incident infrared rays and convert the incident infrared rays to heat and a first thermoelectric conversion element to convert the heat obtained by the conversion in the infrared absorption film to a electric signal, each of the reference pixels comprising a second thermoelectric conversion element. Each of first ends of the reference pixels are connected to a reference potential line, and a difference between the signal potential read out from a corresponding signal line and a reference potential supplied from the reference potential line is amplified and outputted.
Abstract:
An image sensor includes a semiconductor substrate; first pixels laid out above cavities provided within the semiconductor substrate, the first pixels converting thermal energy generated by incident light into an electric signal; supporting parts connected between the first pixels and the semiconductor substrate, the supporting parts supporting the first pixels above the cavities; and second pixels fixedly provided on the semiconductor substrate without via the cavities, wherein a plurality of the first pixels and a plurality of the second pixels are laid out two-dimensionally to form a pixel region, and each of the second pixels is adjacent to the first pixels.
Abstract:
An infrared ray sensor element includes: a first signal wiring part including a first signal wire and provided on a first region of a semiconductor substrate different from a region on which a concave part is provided; a second signal wiring part including a second signal wire and provided on the first region so as to intersect the first signal wiring part; a supporter including a support wiring part disposed over the concave part, and including a first wire electrically connected at a first end thereof to the first signal wire, and a second wire insulated from the first wire, disposed in parallel with the first wire, and electrically connected at a first end thereof to the second signal wire; a thermoelectric transducer electrically connected to second ends of the first and second wires; an infrared ray absorption layer provided over the thermoelectric transducer; and a detection cell provided over the concave part.
Abstract:
A power supply apparatus which supplies power to an amplifier, includes: a regulator stabilizing a voltage of the power supplied to the amplifier; and a stabilizing controller obtaining an amplitude level of an input signal inputted to the amplifier and controlling a stability of the voltage by the regulator based on the amplitude level.
Abstract:
In an acoustoelectric converter element, a light wave from a light source is introduced into a first optical waveguide of a vibration substrate, and diffracted by a diffraction grating disposed on the first optical waveguide. The diffracted light is directed to and detected by a photo detector. Here, the vibration substrate is so supported as to vibrate with respect to an acoustic wave. Therefore, the diffracted light detected by the photo detector is modulated by the acoustic wave, and a signal is output from the detector in accordance with the acoustic wave.
Abstract:
An imaging device comprises a select line, a first signal line crossing the select line, and a first pixel provided at a portion corresponding to a crossing portion of the select line and the first signal line, the first pixel comprising a first buffer layer formed on a substrate, a first bolometer film formed on the first buffer layer, made of a compound which undergoes metal-insulator transition, and generating a first temperature detection signal, a first switching element formed on the substrate, selected by a select signal from the select line, and supplying the first temperature detection signal to the first signal line, and a metal wiring connecting a top surface of the first bolometer film to the first switching element.