Abstract:
This disclosure describes systems, methods, and devices related to an optimized channel estimation field. A device may determine an enhanced directional multi-gigabit (EDMG) frame to be sent to a first device using a communication link. The device may determine a channel estimation field (CEF) associated with the EDMG frame, wherein the CEF is comprised of one or more orthogonal frequency division multiplexing (OFDM) symbols. The device may cause to send the EDMG frame to the first device.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Some demonstrative embodiments include apparatus, system and method of communicating a transmission according to a symbol block structure and Guard Interval (GI) scheme. For example, an apparatus may include logic and circuitry configured to cause a wireless station to generate a plurality of Single Carrier (SC) blocks according to a SC block structure corresponding to a GI type of a plurality of GI types, a SC block of the plurality of SC blocks including a GI followed by a data block, the GI including a Golay sequence having a length based at least on the GI type, a length of the data block is based at least on the GI type; and to transmit a SC transmission over a millimeter Wave (mmWave) frequency band based on the plurality of SC blocks.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a system and method for simultaneous high-speed multi-user beam tracking in a Wireless Network are generally described herein. A transmitting station (STA) may be configured to support directional wireless links with multiple receiving STAs in a high-mobility millimeter-wave (mm Wave) wireless network. The transmitting STA may include hardware processing circuitry configured to, for each of the multiple receiving STAs, transmit a packet over a directional wireless link between the transmitting STA and the receiving STA and receive transmit antenna performance metrics from the receiving STA. The packet may include a data portion, a receive training sequence, and a transmit training sequence that occupy different portions of the packet, and the transmission of the packet over the directional wireless link may include transmission of the data portion of the packet according to a current transmit antenna direction associated with the directional wireless link.
Abstract:
Embodiments of a system and method for simultaneous high-speed multi-user beam tracking in a Wireless Network are generally described herein. A transmitting station (STA) may be configured to support directional wireless links with multiple receiving STAs in a high-mobility millimeter-wave (mm Wave) wireless network. The transmitting STA may include hardware processing circuitry configured to, for each of the multiple receiving STAs, transmit a packet over a directional wireless link between the transmitting STA and the receiving STA and receive transmit antenna performance metrics from the receiving STA. The packet may include a data portion, a receive training sequence, and a transmit training sequence that occupy different portions of the packet, and the transmission of the packet over the directional wireless link may include transmission of the data portion of the packet according to a current transmit antenna direction associated with the directional wireless link.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Generally, this disclosure provides systems and methods for a modular antenna array using radio frequency (RF) and baseband (BB) beamforming. A system may include a plurality of antenna modules, each of the antenna modules further including an array of antenna elements coupled to an RF beamforming circuit, the RF beamforming circuit to adjust phase shifts associated with the antenna elements to generate an antenna beam associated with the antenna module; and a central beamforming module coupled to each of the antenna modules, the central beamforming module to control the antenna beam associated with each of the antenna modules and to generate signal adjustments relative to each of the antenna modules, wherein the arrays of antenna elements of the antenna modules combine to operate as a composite antenna beamforming array.
Abstract:
Channel state information (CSI) feedback of common CSI components is discussed. An example user equipment (UE) includes a receiver circuit, processor, and transmitter circuit. The receiver circuit is configured to receive CSI configuration information for a plurality of downlink (DL) cells that indicates a first group of two or more of the DL cells and at least one CSI component designated for common reporting for the first group. The processor is configured to calculate a group value for each of the at least one CSI components designated for common reporting for the first group and selectively calculate, for each DL cell of the first group, individual values for any CSI components not designated for common reporting for the first group. The transmitter circuit is configured to transmit the group value for each of the designated CSI components and the individual values for any additional CSI components.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.