Abstract:
Methods include forming a dielectric layer from a first material above a substrate. The dielectric layer is formed such that a preferred crystal direction for at least one electrical property of the first material is parallel to a surface of the dielectric layer. Next, forming a first and second trench within the dielectric layer wherein the first and second trenches have at least one curved portion. Forming a second material within the first trench and a third material within the second trench wherein the first material is different from the second and third materials. The first and second trenches are separated by a distance between 3-20 nm.
Abstract:
Methods include forming a dielectric layer from a first material above a substrate. The dielectric layer is formed such that a preferred crystal direction for at least one electrical property of the first material is parallel to a surface of the dielectric layer. Next, forming a first and second trench within the dielectric layer wherein the first and second trenches have at least one curved portion. Forming a second material within the first trench and a third material within the second trench wherein the first material is different from the second and third materials. The first and second trenches are separated by a distance between 3-20 nm.
Abstract:
Conducting materials having narrow impurity conduction bands can reduce the number of high energy excitations, and can be prepared by a sequence of plasma treatments. For example, a dielectric layer can be exposed to a first plasma ambient to form vacancy sites, and the vacancy-formed dielectric layer can be subsequently exposed to a second plasma ambient to fill the vacancy sites with substitutional impurities.
Abstract:
A resistive switching memory device can include three or more electrodes interfacing a switching layer, including a top electrode, a bottom electrode, and a side electrode. The top and bottom electrodes can be used for forming conductive filaments and for reading the memory device. The side electrode can be used to control the resistance state of the switching layer.
Abstract:
Amorphous silicon (a-Si) is hydrogenated for use as a dielectric (e.g., an interlayer dielectric) for superconducting electronics. A hydrogenated a-Si layer is formed on a substrate by CVD or sputtering. The hydrogen may be integrated during or after the a-Si deposition. After the layer is formed, it is first annealed in an environment of high hydrogen chemical potential and subsequently annealed in an environment of low hydrogen chemical potential. Optionally, the a-Si (or an H-permeable overlayer, if added) may be capped with a hydrogen barrier before removing the substrate from the environment of low hydrogen chemical potential.
Abstract:
Provided are superconducting circuits, methods of operating these superconducting circuits, and methods of determining processing conditions for operating these superconducting circuits. A superconducting circuit includes a superconducting element, a conducting element, and a dielectric element disposed between the superconducting element and the conducting element. The conducting element may be another superconducting element, a resonating element, or a conducting casing. During operation of the superconducting element a direct current (DC) voltage is applied between the superconducting element and the conducting element. This application of the DC voltage reduces average microwave absorption of the dielectric element. In some embodiments, when the DC voltage is first applied, the microwave absorption may initially rise and then fall below the no-voltage absorption level. The DC voltage level may be determined by testing the superconducting circuit at different DC voltage levels and selecting the one with the lowest microwave absorption.
Abstract:
Amorphous silicon (a-Si) is hydrogenated for use as a dielectric (e.g., an interlayer dielectric) for superconducting electronics. A hydrogenated a-Si layer is formed on a substrate by CVD or sputtering. The hydrogen may be integrated during or after the a-Si deposition. After the layer is formed, it is first annealed in an environment of high hydrogen chemical potential and subsequently annealed in an environment of low hydrogen chemical potential. Optionally, the a-Si (or an H-permeable overlayer, if added) may be capped with a hydrogen barrier before removing the substrate from the environment of low hydrogen chemical potential.
Abstract:
An internal electrical field in a resistive memory element can be formed to reduce the forming voltage. The internal electric field can be formed by incorporating one or more charged layers within the switching dielectric layer of the resistive memory element. The charged layers can include adjacent charge layers to form dipole layers. The charged layers can be formed at or near the interface of the switching dielectric layer with an electrode layer. Further, the charged layer can be oriented with lower valence substitution side towards lower work function electrode, and higher valence substitution side towards higher work function electrode.
Abstract:
A dielectric layer can achieve a crystallography orientation similar to a base dielectric layer with a conductive layer disposed between the two dielectric layers. By providing a conductive layer having similar crystal structure and lattice parameters with the base dielectric layer, the crystallography orientation can be carried from the base dielectric layer, across the conductive layer to affect the dielectric layer. The process can be used to form capacitor structure for anisotropic dielectric materials, along the direction of high dielectric constant.
Abstract:
Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.