Abstract:
The illustrative embodiment of the present invention is an apparatus and method that is capable of non-contact cooling of a hot body by optically-enhanced radiation. An apparatus in accordance with the illustrative embodiment includes a cold body and an optical system. The optical system couples the cold body to a hot body for the transmission of infrared radiation. Once optically coupled, heat will flow, at an enhanced rate, from the hot body to the cold body, as dictated by thermodynamics, thereby cooling the hot body. In some embodiment, the temperature of the cold body is held substantially constant.
Abstract:
An article and method for high throughput and a high content investigation of compound interactions with live tissue or its substitutes under controlled conditions during compound absorption and related processes. In some variations of the illustrative embodiment, the article is a multi-chamber enclosure having at least two chambers separated by a membrane. Membranes can be prepared from live epithelial tissue or from an artificial material with or without attached cells from cell-line cultures. Each chamber is advantageously connected to a fluidic-control system by tubes that pass through a feed fitting. In addition to coupling the chambers with the fluidic-control system, the feed fitting, which is spring-biased, provides a sealing force to seal the enclosure. In some variations, one or more multi-chamber enclosures are installed in a mother chamber, which provides controlled environmental conditions. Operation of the article includes automatic introduction of compounds, buffers, and gases into the chambers, establishing reaction conditions inside the chambers, and individually sampling from the chambers.
Abstract:
A U-valve apparatus including a bidirectional check valve for controlling the flow of liquid from a vessel while preventing inadvertent discharge from the vessel. The check valve allows passage of a fluid such a gas into the vessel, for purposes of agitating the liquid or for other purposes, and also permits the evacuation of the liquid from the vessel. The U-valve apparatus is advantageously included in a universal fluid exchange device including upper and lower reaction vessel supports which include pressure sealed injection and evacuation ports for each supported reaction vessel. Reaction vessels matingly engage through the injection and evacuation ports with fittings which are connected through flexible tubing to respective supplying and receiving vessels. Each of one or more reaction vessels may suitably be connected by a U-valve apparatus including a check valve to a corresponding receiving vessel. The reaction vessels or fittings are moved into position, as required, so that reactants may be directly supplied from supplying vessels in the order and amount desired without operation of valves that can become contaminated, and so that the reaction vessels may dispel their contents into the appropriate receiving vessels. The system may be highly advantageous in applications such as combinatorial chemistry where myriad combinations of chemicals, solvents and reagents are employed.
Abstract:
A particle sorter/dispenser wherein particles that are suspended in a liquid are flowed through a conduit and selectively dispensed through a dispensing orifice. The conduit includes a sensing zone wherein the liquid-suspended particles are interrogated by a sensor. Data from the sensor is received by processing electronics that analyzes the data from the sensor and makes a decision whether or not to dispense a particle. The particle sorter/dispenser further includes a switch that, responsive to a signal from the processing electronics, controls whether or not a given particle is dispensed through the dispensing orifice. The switch has one or two valves that introduce relatively high-pressure liquid into the conduit. The flow streamlines of the high-pressure liquid controls the flow of the relatively low-pressure liquid-suspended particles in the conduit. Particles that are not dispensed are flowed past the dispensing orifice to a recycle reservoir that depends from the downstream end of the conduit.
Abstract:
An apparatus for sealing a wide variety of vessels and for providing access to the interior of such vessels while sealed. In some embodiments, a sealing apparatus includes a base plate, a cover plate, and a seal that is disposed therebetween. In use on a vessel, when the seal is disposed in a rest position, it covers a vessel-access hole that penetrates the base plate and communicates with the underlying vessel. To temporarily displace the seal, a tube, such as a syringe needle, etc., is inserted through a guide hole in the cover plate. The tube contacts the seal, which forces the seal to move at least partially out of its sealing position. With continued downward movement, the tube enters the underlying vessel so that it can withdraw or add fluid to it. When the tube is withdrawn, the seal returns to its sealing position.
Abstract:
A U-valve apparatus including a bidirectional check valve for controlling the flow of liquid from a vessel while preventing inadvertent discharge from the vessel. The check valve allows passage of a fluid such a gas into the vessel, for purposes of agitating the liquid or for other purposes, and also permits the evacuation of the liquid from the vessel. The U-valve apparatus is advantageously included in a universal fluid exchange device including upper and lower reaction vessel supports which include pressure sealed injection and evacuation ports for each supported reaction vessel. Reaction vessels matingly engage through the injection and evacuation ports with fittings which are connected through flexible tubing to respective supplying and receiving vessels. Each of one or more reaction vessels may suitably be connected by a U-valve apparatus including a check valve to a corresponding receiving vessel. The reaction vessels or fittings are moved into position, as required, so that reactants may be directly supplied from supplying vessels in the order and amount desired without operation of valves that can become contaminated, and so that the reaction vessels may dispel their contents into the appropriate receiving vessels. The system may be highly advantageous in applications such as combinatorial chemistry where myriad combinations of chemicals, solvents and reagents are employed.
Abstract:
An article including a multi-well plate that has an infrared radiation (“IR”) reflective coating disposed over the surface of the wells. In some embodiments, the wells have a parabolic or near parabolic shape. In additional embodiments, the wells, which have a parabolic or near parabolic shape, are truncated at or near a focal plane of the well. In some further embodiments, the wells have a hemispheric shape or a truncated hemispheric shape. IR imaging systems that incorporate the multi-well plates described herein exhibit improved sensitivity and signal-to-noise ratio.
Abstract:
A U-valve apparatus including a bidirectional check valve for controlling the flow of liquid from a vessel while preventing inadvertent discharge from the vessel. The check valve allows passage of a fluid such a gas into the vessel, for purposes of agitating the liquid or for other purposes, and also permits the evacuation of the liquid from the vessel. The U-valve apparatus is advantageously included in a universal fluid exchange device including upper and lower reaction vessel supports which include pressure sealed injection and evacuation ports for each supported reaction vessel. Reaction vessels matingly engage through the injection and evacuation ports with fittings which are connected through flexible tubing to respective supplying and receiving vessels. Each of one or more reaction vessels may suitably be connected by a U-valve apparatus including a check valve to a corresponding receiving vessel. The reaction vessels or fittings are moved into position, as required, so that reactants may be directly supplied from supplying vessels in the order and amount desired without operation of valves that can become contaminated, and so that the reaction vessels may dispel their contents into the appropriate receiving vessels. The system may be highly advantageous in applications such as combinatorial chemistry where myriad combinations of chemicals, solvents and reagents are employed.
Abstract:
A method for handling and dispensing small volumes of liquid, and apparatus for carrying out the method, are disclosed. A small volume of liquid, which is retained within a fluid-dispensing member, is dispensed therefrom by accelerating, and then abruptly decelerating, the member. The abrupt deceleration causes the retained liquid to discharge. The discharged liquid may be directed toward a receiver. A micro volume liquid dispenser for practicing the method includes a plurality of fluid-dispensing members configured for aspiring and retaining a small liquid volume via capillary action. The dispenser further includes an actuator for moving/accelerating the fluid-dispensing members and for stopping/abruptly decelerating the fluid-dispensing members.
Abstract:
Improved circuitry for detecting pulsed infrared light which is particularly suitable for use with laser therapeutic devices. Laser therapeutic devices generally utilize pulsed laser energy of infrared wavelengths. Because such light is invisible the operator of the therapeutic device cannot determine if it is actually working. The invention provides pulsed infrared light detection circuitry which is very compact so that it may be made part of the therapeutic device. The circuitry includes an infrared sensitive transducer coupled to the input of an inverting operational amplifier, a peak detector coupled to the output of the inverting amplifier, and a non-inverting amplifier coupled to the output of the peak detector for driving a display to indicate the detection of pulsed infrared energy.