摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a tapered contact opening in an ILD disposed on a substrate, wherein a source/drain contact area is exposed, preamorphizing a portion of a source drain region of the substrate, implanting boron into the source/drain region through the tapered contact opening, forming a metal layer on the source/drain contact area, and then annealing the metal layer to form a metal silicide.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include removing residual dielectric material from a metal gate structure, and then forming a stress relief layer on a top surface and on a sidewall region of the metal gate structure. A stress is introduced into a channel region disposed beneath the metal gate structure.
摘要:
An analog transistor useful for low noise applications or for electrical circuits benefiting from tight control of threshold voltages and electrical characteristics is described. The analog transistor includes a substantially undoped channel positioned under a gate dielectric between a source and a drain with the undoped channel not being subjected to contaminating threshold voltage implants or halo implants. The channel is supported on a screen layer doped to have an average dopant density at least five times as great as the average dopant density of the substantially undoped channel which, in turn, is supported by a doped well having an average dopant density at least twice the average dopant density of the substantially undoped channel.
摘要:
A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion implantation.
摘要:
A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion, implantation.
摘要:
Multiple transistor types are formed in a common epitaxial layer by differential out-diffusion from a doped underlayer. Differential out-diffusion affects the thickness of a FET channel, the doping concentration in the FET channel, and distance between the gate dielectric layer and the doped underlayer. Differential out-diffusion may be achieved by differentially applying a dopant migration suppressor such as carbon; differentially doping the underlayer with two or more dopants having the same conductivity type but different diffusivities; and/or differentially applying thermal energy.
摘要:
Punch-through in a transistor device is reduced by forming a well layer in an implant region, forming a stop layer in the well layer of lesser depth than the well layer, and forming a doped layer in the stop layer of lesser depth than the stop layer. The stop layer has a lower concentration of impurities than the doped layer in order to prevent punch-through without increasing junction leakage.
摘要:
A method for fabricating a semiconductor structure with a channel stack includes forming a screening layer under a gate of a PMOS transistor element and a NMOS transistor element, forming a threshold voltage control layer on the screening layer, and forming an epitaxial channel layer on the threshold control layer. At least a portion of the epitaxial channel layers for the PMOS transistor element and the NMOS transistor element are formed as a common blanket layer. The screening layer for the PMOS transistor element may include antimony as a dopant material that may be inserted into the structure prior to or after formation of the epitaxial channel layer.
摘要:
A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. A novel dopant profile indicative of a distinctive notch enables tuning of the VT setting within a precise range. This VT set range may be extended by appropriate selection of metals so that a very wide range of VT settings is accommodated on the die. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low σVT) and VDD, so that the body bias can be tuned separately from VT for a given device.
摘要:
An apparatus comprising a semiconductor substrate; a conductively doped source or drain (source/drain) region at the surface of the substrate; a raised semiconductor layer deposited over the source/drain region to form a raised source/drain region; a via formed in the raised source/drain region having substantially vertical sidewalls reaching partly or substantially to the source/drain region; and a metal contact filling the via.