摘要:
A method for fabricating a semiconductor structure so as to have reduced junction leakage is disclosed. The method includes providing substitutional boron in a semiconductor substrate. The method includes preparing the substrate using a pre-amorphization implant and a carbon implant followed by a recrystallization step and a separate defect repair/activation step. Boron is introduced to the pre-amorphized region preferably by ion implantation.
摘要:
A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
摘要:
Methods for fabricating semiconductor devices and devices therefrom are provided. A method includes providing a substrate having a semiconducting surface with first and second layers, where the semiconducting surface has a plurality of active regions comprising first and second active regions. In the first active region, the first layer is an undoped layer and the second layer is a highly doped screening layer. The method also includes removing a part of the first layer to reduce a thickness of the substantially undoped layer for at least a portion of the first active region without a corresponding thickness reduction of the first layer in the second active region. The method additionally includes forming semiconductor devices in the plurality of active regions. In the method, the part of the first layer removed is selected based on a threshold voltage adjustment required for the substrate in the portion of the first active region.
摘要:
A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion implantation.
摘要:
A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion, implantation.
摘要:
A method for fabricating field effect transistors using carbon doped silicon layers to substantially reduce the diffusion of a doped screen layer formed below a substantially undoped channel layer includes forming an in-situ epitaxial carbon doped silicon substrate that is doped to form the screen layer in the carbon doped silicon substrate and forming the substantially undoped silicon layer above the carbon doped silicon substrate. The method may include implanting carbon below the screen layer and forming a thin layer of in-situ epitaxial carbon doped silicon above the screen layer. The screen layer may be formed either in a silicon substrate layer or the carbon doped silicon substrate.
摘要:
Silicon loss prevention in a substrate during transistor device element manufacture is achieved by limiting a number of photoresist mask and chemical oxide layer stripping opportunities during the fabrication process. This can be achieved through the use of a protective layer that remains on the substrate during formation and stripping of photoresist masks used in identifying the implant areas into the substrate. In addition, undesirable reworking steps due to photoresist mask misalignment are eliminated or otherwise have no effect on consuming silicon from the substrate during fabrication of device elements. In this manner, device elements with the same operating characteristics and performance can be consistently made from lot to lot.
摘要:
Improved systems, methods and compositions for plasma enhanced atomic layer deposition are herein disclosed. According to one embodiment, a method includes exposing a substrate to a first process material to form a film comprising at least a portion of the first process material at a surface of the substrate. The substrate is exposed to a second process material and the second process material is activated into plasma to initiate a reaction between at least a portion of the first process material and at least a portion of the second process material at the surface of the substrate.