摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a tapered contact opening in an ILD disposed on a substrate, wherein a source/drain contact area is exposed, preamorphizing a portion of a source drain region of the substrate, implanting boron into the source/drain region through the tapered contact opening, forming a metal layer on the source/drain contact area, and then annealing the metal layer to form a metal silicide.
摘要:
Embodiments include transistor devices and a method of forming the transistor devices. A transistor device includes a first dielectric over a substrate, and vias on a first metal layer, where the first metal layer is on an etch stop layer that is on the first dielectric. The transistor device also includes a second dielectric over the first metal layer, vias, and etch stop layer, where the vias include sidewalls, top surfaces, and bottom surfaces, and stacked transistors on the second dielectric and the top surfaces of the vias, where the sidewalls and top surfaces of the vias are positioned within a footprint of the stacked transistors. The stacked transistors include gate electrodes and first and second transistor layers. The first metal layer includes conductive materials including tungsten or cobalt. The footprint may include a bottom surface of the first transistor layer and a bottom surface of the gate electrodes.
摘要:
An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
摘要:
Thin film transistors having U-shaped features are described. In an example, integrated circuit structure including a gate electrode above a substrate, the gate electrode having a trench therein. A channel material layer is over the gate electrode and in the trench, the channel material layer conformal with the trench. A first source or drain contact is coupled to the channel material layer at a first end of the channel material layer outside of the trench. A second source or drain contact is coupled to the channel material layer at a second end of the channel material layer outside of the trench.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may comprise forming a transistor comprising a metal gate disposed on a gate dielectric that is disposed on a substrate, and a source/drain region disposed adjacent a channel region of the transistor. The source/drain region comprises a source/drain extension comprising a vertex point, wherein a top surface of the channel region is substantially planar with the vertex point.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a tapered contact opening in an ILD disposed on a substrate, wherein a source/drain contact area is exposed, preamorphizing a portion of a source drain region of the substrate, implanting boron into the source/drain region through the tapered contact opening, forming a metal layer on the source/drain contact area, and then annealing the metal layer to form a metal silicide.
摘要:
A semiconductor device comprises a substrate and a semiconductor body formed on the substrate. The semiconductor body comprises a source region; and a drain region. The source region or the drain region, or combinations thereof, comprises a first side surface, a second side surface, and a top surface. The first side surface is opposite the second side surface, the top surface is opposite the bottom surface. The source region or the drain region, or combinations thereof, comprise a metal layer formed on the substantially all of the first side surface, substantially all of the second side surface, and the top surface.
摘要:
Transistor cell architectures including both front-side and back-side structures. A transistor may include one or more semiconductor fins with a gate stack disposed along a sidewall of a channel portion of the fin. One or more source/drain regions of the fin are etched to form recesses with a depth below the channel region. The recesses may extend through the entire fin height. Source/drain semiconductor is then deposited within the recess, coupling the channel region to a deep source/drain. A back-side of the transistor is processed to reveal the deep source/drain semiconductor material. One or more back-side interconnect metallization levels may couple to the deep source/drain of the transistor.
摘要:
A semiconductor device comprises a fin and a metal gate film. The fin is formed on a surface of a semiconductor material. The metal gate film formed on the fin and comprises ions implanted in the metal gate film to form a compressive stress within the metal gate. In one exemplary embodiment, the surface of the semiconductor material comprises a (100) crystalline lattice orientation, and an orientation of the fin is along a direction with respect to the crystalline lattice of the semiconductor. In another exemplary embodiment, the surface of the semiconductor material comprises a (100) crystalline lattice orientation, and the orientation of the fin is along a direction with respect to the crystalline lattice of the semiconductor. The fin comprises an out-of-plane compression that is generated by the compressive stress within the metal gate film.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those structures may comprise a transistor comprising a metal gate disposed on a gate dielectric that is disposed on a substrate, and a source/drain region disposed adjacent a channel region of the transistor. The source/drain region comprises a source/drain extension comprising a vertex point, wherein a top surface of the channel region is substantially planar with the vertex point.