摘要:
A device which determines a motion parameter with a sensor having a plurality of sensor elements coupled to one another, in which the motion parameter corresponds to a rotational speed. The device includes a starter loop for putting the sensor in a state of excitation via a starter signal via at least one of the sensor elements and for generating a sensor quantity, with the sensor quantity being a measure of a response of the sensor to the starter signal, and the starter signal having a substantially constant amplitude. A detector loop coupled to at least one of the sensor elements is also provided in the device for providing a measurement signal correlating with the motion parameter. The device further includes an analysis unit for providing an output voltage representing the motion parameter as a function of the measurement signal, a correction unit for keeping a substantially constant correlation between the output voltage and the motion parameter and for generating a correction signal as a function of the sensor quantity, and a multiplier providing the correction signal to the analysis unit.
摘要:
A sensor device includes: a sensor module mounted on a conductor board; a sensitive element which is sensitive to a variable; a self-test control unit implementing a self-test program, the self-test control unit applying a self-test variable to the sensitive element, taking the self-test program into account; a detection unit detecting a characteristic of the sensitive element which is altered as a result of the applied self-test variable and providing an actual self-test response, taking the altered characteristic into account; and a comparator unit provided on or in the sensor module, the comparator unit comparing the actual self-test response to at least one specified setpoint self-test response and providing comparative information.
摘要:
A delta sigma modulator includes an oscillatory system having a natural frequency and an electronics and a control loop which acts upon the electronics from the oscillatory system and again upon the oscillatory system from the electronics. The control loop provides that a gain in the control loop demonstrates a peaking in a frequency range around the natural frequency of the oscillatory system.
摘要:
A micromechanical component includes a first electrode and a second electrode, the first electrode being moveable relative to the second electrode in a main direction of movement, and the first electrode and/or the second electrode being configured such that a movement of the first electrode parallel to the main direction of movement results in a modification of the average distance in a region of overlap of the projection of the first electrode with the projection of the second electrode, both perpendicular to the main direction of movement and in a main plane of extension.
摘要:
An exemplary embodiment of the present invention creates a micromechanical rotational rate sensor having a first Coriolis mass element and a second Coriolis mass element which may be situated over a surface of a substrate. An exemplary embodiment of a micromechanical rotational rate sensor may have an activating device by which the first Coriolis mass element and the second Coriolis mass element are able to have vibrations activated along a first axis. An exemplary embodiment of a micromechanical rotational rate sensor may have a detection device by which deflections of the first Coriolis mass elements and of the second Coriolis element are able to be detected along a second axis, which is perpendicular to the first axis, on the basis of a correspondingly acting Coriolis force. The first axis and second axis may run parallel to the surface of the substrate. The detecting device may have a first detection mass device and a second detection mass device. The centers of gravity of the first Coriolis mass element, the second Coriolis mass element, the first detection mass device and the second detection mass device may coincide at a common mass center of gravity when they are at rest.
摘要:
A micromechanical rotation rate sensor has a seismic mass and driving devices which cause a driving vibration of the seismic mass in a first direction x. The rotation rate sensor has measuring devices which measure a deflection of the seismic mass in a second direction y, and generate a deflection signal. The deflection includes a measurement deflection caused by a Coriolis force and an interference deflection, the interference deflection being phase-shifted with respect to the measurement deflection by 90°. Compensation devices are provided at the seismic mass to reduce the interference deflection. Regulation devices are provided, to which the deflection signal is supplied as an input variable, which demodulate an interference deflection signal from the deflection signal, and which generate a compensation signal from the interference deflection signal, which is supplied to the compensation devices.
摘要:
A yaw-rate sensor is proposed having a first and a second Coriolis element (100, 200) which are arranged side-by-side above a surface (1) of a substrate. The Coriolis elements (100, 200) are induced to oscillate parallel to a first axis. Due to a Coriolis force, the Coriolis elements (100, 200) are deflected in a second axis which is perpendicular to the first axis. The first and second Coriolis elements (100, 200) are coupled by a spring (52) which is designed to be yielding in the first and in the second axis. Thus, the frequencies of the oscillations in the two axes are developed differently for the in-phase and antiphase oscillation.
摘要:
A rotation rate sensor is described that operates on the principle of a resonant vibration gyrometer and is excited by an amplitude-regulated oscillator loop. This sensor is used for instance to ascertain the yaw speed of a vehicle. The effect of Coriolis acceleration is evaluated, which is a measure for the current yaw speed. To monitor the operability of the sensor and the associated electronics, an integrated self-test function is used, which as a so-called BITE function introduces a defined interference variable after actuation of a test input. This defined interference variable leads to an estimatable output voltage, whose occurrence is evaluated for error detection.