摘要:
In order to solve problems involved in micromolding of a glass, according to the present invention, there can be provided a technology for enabling molding of a glass without applying a large load.A molding apparatus of a glass material according to the present invention is characterized by containing means for holding a glass material and a molding die in contact with each other, means for heating the glass material and the molding die, and means for applying a voltage across the glass material and the molding die, in which press-molding is performed by electrostatic attraction acting between a surface of the glass material and a surface of the molding die. Further, a molded product of a glass material according to the present invention is characterized by including an alkali metal as a component, in which a concentration of the alkali metal is lowered in vicinity of a surface to be molded as compared with that of a glass base material.
摘要:
An IC (Integrated Circuit) package includes a package body having a cavity formed for receiving an IC chip therein. A terrace protrudes from at least part of the edges defining the cavity into the cavity. Discrete devices can be mounted on the terrace, i.e., inside the IC package. With this configuration, the IC package insures the stable operation of a high-frequency IC circuit.
摘要:
A method of forming a film of ultrafine particles includes the steps of accelerating ultrafine particles within a vacuum chamber to cause them to collide with a substrate and be deposited, and, at least before said ultrafine particles collide with said substrate, irradiating the ultrafine particles and the substrate with an ionic, atomic or molecular beam or low-temperature plasma or other high-speed, high-energy beam of high-energy atoms or molecules, whereby the surfaces of the ultrafine particles and substrate are activated without being fused, thus promoting bonding between said ultrafine particles and substrate or between the ultrafine particles to form a dense deposit that has good film properties and good adhesion to the substrate while maintaining the crystal properties of the ultrafine particles.
摘要:
A semiconductor light emitting element including, in a light extraction layer thereof, a photonic crystal periodic structure including two systems (structures) with different refractive indices. An interface between the two systems (structures) satisfies Bragg scattering conditions, and the photonic crystal periodic structure has a photonic band gap.
摘要:
The package for a light emitting element according to the present invention comprises a base substrate made of ceramic including glass, and a frame body made of ceramic. The frame body is arranged on a top surface of the base substrate and provided therein with a cavity for accommodating the light emitting element. A part of the glass included in the base substrate is precipitated in an area of the top surface of the base substrate, which is a bottom surface of the cavity, and a crystallinity degree of the precipitated glass is greater than 3%. In the manufacturing method of the package according to the present invention, a ceramic body which is to be the package is fired at a temperature of 840 degrees C. or higher and lower than 950 degrees C.
摘要:
In a package for a light emitting element according to the present invention, a light reflecting plate is buried in a base substrate at a position below a cavity with a light reflecting surface thereof facing upward, a part of the ceramic forming the base substrate is interposed between the light reflecting surface of the light reflecting plate and a top surface of the base substrate, and at least the part is light-transmitting. A light emitting device comprises the package, and the light emitting element accommodated in the cavity of the package. In another light emitting device, a first reflector which is made of a metal material and reflects a light emitted from the light emitting element is buried in a frame body.
摘要:
A carbon gel composite material including: a carbon gel which is composed of primary particles with an average particle diameter of 2 to 50 nm, where no x-ray diffraction peaks are observed over a scan angle (2θ) range of 0.5 to 10° (CuK60 radiation) and where in a pore size distribution calculated from an adsorption/desorption isotherm, if a pore diameter corresponding to the peak of the pore size distribution is not smaller than 1 nm and is smaller than 10 nm (pore diameter (d)), pores accounting for 60% or more of the total pore volume have a pore diameter within plus or minus 2 nm of the pore diameter (d), and if a pore diameter corresponding to the peak of the pore size distribution is in a range of 10 to 50 nm (pore diameter (D)), pores accounting for 60% or more of the total pore volume have a pore diameter in a range of (0.75×D) to (1.25×D); and at least one adsorbed component selected from the group consisting of proteins, metal complexes and metals, which is adsorbed on the carbon gel.