Abstract:
The present specification discloses a membrane reactor comprising a reaction region; a permeate region; and a composite membrane disposed at a boundary of the reaction region and the permeate region, wherein the reaction region comprises a bed filled with a catalyst for dehydrogenation reaction, wherein the composite membrane comprises a support layer including a metal with a body-centered-cubic (BCC) crystal structure, and a catalyst layer including a palladium (Pd) or a palladium alloy formed onto the support layer, wherein ammonia (NH3) is supplied to the reaction region, the ammonia is converted into hydrogen (H2) by the dehydrogenation reaction in the presence of the catalyst for dehydrogenation reaction, and the hydrogen permeates the composite membrane and is emitted from the membrane reactor through the permeate region.
Abstract:
The present invention provides a hydrogen generating apparatus and a hydrogen generating method, wherein the hydrogen generating apparatus generates hydrogen by dehydrating formic acid, and comprises: a reactor for containing water and a heterogeneous catalyst; a formic acid feeder for feeding formic acid into the reactor; and a moisture remover for removing moisture generated from the reactor.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
An ionic conductivity measurement device of an electrolytic membrane includes a humidification chamber configured to accommodate an ion-conductive electrolytic membrane and having concave grooves respectively formed at both sides thereof which face the electrolytic membrane to form a measurement space for measuring ionic conductivity of the electrolytic membrane; a plurality of channels formed at a bottom surface of each of the concave grooves; a gas distribution unit detachably coupled to each of the concave grooves with the electrolytic membrane being interposed therebetween; and a plurality of electrodes provided in contact with one side of the electrolytic membrane and supported by the gas distribution unit, the plurality of electrodes being disposed side by side to measure an impedance of the electrolytic membrane.
Abstract:
An anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding CeO2 and/or Cr for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode is provided. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
Abstract:
Disclosed are a 5-(2,6-dioxyphenyl)tetrazole-containing polymer, a method for preparing the same, a membrane containing the same and an electrochemical device, particularly a high temperature polymer electrolyte membrane fuel cell, including the membrane. The membrane containing the 5-(2,6-dioxyphenyl)tetrazole-containing polymer is capable of providing high proton conductivity and exhibiting good mechanical properties, thereby capable of providing superior fuel cell performance. Accordingly, the membrane may be usefully used in an electrochemical device, particularly a fuel cell, more particularly a high temperature polymer electrolyte membrane fuel cell.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
Abstract:
A polymer electrolyte membrane fuel cell is provided. The polymer electrolyte membrane fuel cell includes a phosphoric acid-doped polyimidazole electrolyte membrane and a complex catalyst. In the complex catalyst, an alloy or mixture of a metal and a chalcogen element is supported on a carbon carrier. The polymer electrolyte membrane fuel cell exhibits further improved long-term operation, power generation efficiency, and operational stability at high temperature. The complex catalyst can be produced by a simple method.
Abstract:
Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).