摘要:
Methods and apparatus are disclosed for manufacturing metal-insulator-metal (MIM) capacitors. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, which has a bottle neck. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, in contact with a sidewall of a via. The sidewall contact or the bottle neck of the electrode may burn out to form a high impedance path when the leakage current exceeds a specification, while the sidewall contact or the bottle neck of the electrode has no impact for normal MIM operations. The MIM capacitors may be used as decoupling capacitors.
摘要:
A semiconductor device includes a semiconductor substrate, an isolation structure disposed in the semiconductor substrate, a conductive layer disposed over the isolation structure, a capacitor disposed over the isolation structure, the capacitor including a top electrode, a bottom electrode, and a dielectric disposed between the top electrode and the bottom electrode, and a first contact electrically coupling the conductive layer and the bottom electrode, the bottom electrode substantially engaging the first contact on at least two faces.
摘要:
A new method of depositing PE-oxide or PE-TEOS. An HDP-oxide is provided over a pattern of polysilicon. An etch back is performed to the deposited HDP-oxide, a layer of plasma-enhanced SiN is deposited. This PE-SiN is etched back leaving SiN spacers on the sidewalls of the poly pattern, further leaving a deposition of HDP-oxide on the top surface of the poly pattern. The profile of the holes within the poly pattern in such that the final layer of PE-oxide or PE-TEOS is deposited without resulting in the formation of keyholes in this latter layer.
摘要:
A method for forming a semiconductor device is disclosed. A substrate including a gate dielectric layer and a gate electrode layer sequentially formed thereon is provided. An offset spacer is formed on sidewalls of the gate dielectric layer and the gate electrode layer. A carbon spacer is formed on a sidewall of the offset spacer, and the carbon spacer is then removed. The substrate is implanted to form a lightly doped region using the gate electrode layer and the offset spacer as a mask. The method may also include providing a substrate having a gate dielectric layer and a gate electrode layer sequentially formed thereon. A liner layer is formed on sidewalls of the gate electrode layer and on the substrate. A carbon spacer is formed on a portion of the liner layer adjacent the sidewall of the gate electrode layer. A main spacer is formed on a sidewall of the carbon spacer. The carbon spacer is removed to form an opening between the liner layer and the main spacer. The opening is sealed by a sealing layer to form an air gap.
摘要:
The poor uniformity of Interlevel Dielectric Deposition (ILD) thickness for High Aspect Ratio (HAR) contact after Chemical Mechanical Planarization (CMP) will cause serious underlayer loss due to the longer over-etching time that is required to compensate for thickness differences within the wafer. Prior Art uses 1.5K Plasma Enhanced Tetra-Ethyl-Ortho-Silicate (PETEOS) to serve as a stop layer and thus reduce underlayer loss. The present invention teaches using a non-silicon oxide containing SiN/SiON or Si3N4/SiON as a stop layer. The present invention therefore is aimed at reducing underlayer loss and thereby improving the uniformity of the underlayer thickness upon completion of the hole etching process. Concurrently, the over-etch time can be reduced to less than 10% of the time required for Prior Art contact hole etching.
摘要:
A process for forming a DRAM, cylindrical shaped, stacked capacitor structure, located under a bit line structure, has been developed. The process features defining a polysilicon cell plate structure, during the same photolithotgraphic and anisotropic etching procedures, used to open a bit line contact hole. The bit line contact hole is formed by first opening a top portion of the bit line contact hole, using a photoresist shape as an etch mask, and after the formation of silicon nitride spacers, on the sides of the top portion of the bit line contact hole, the bottom portion of the bit line contact hole is opened, using silicon nitride as an etch mask.
摘要:
Methods and apparatus are disclosed for manufacturing metal-insulator-metal (MIM) capacitors. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, which has a bottle neck. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, in contact with a sidewall of a via. The sidewall contact or the bottle neck of the electrode may burn out to form a high impedance path when the leakage current exceeds a specification, while the sidewall contact or the bottle neck of the electrode has no impact for normal MIM operations. The MIM capacitors may be used as decoupling capacitors.
摘要:
A system-on-chip (SOC) device comprises a first capacitor in a first region, a second capacitor in a second region, and may further comprise a third capacitor in a third region, and any additional number of capacitors in additional regions. The capacitors may be of different shapes and sizes. A region may comprise more than one capacitor. Each capacitor in a region has a top electrode, a bottom electrode, and a capacitor insulator. The top electrodes of all the capacitors are formed in a common process, while the bottom electrodes of all the capacitors are formed in a common process. The capacitor insulator may have different number of sub-layers, formed with different materials or different thickness. The capacitors may be formed in an inter-layer dielectric layer or in an inter-metal dielectric layer. The regions may be a mixed signal region, an analog region, a radio frequency region, a dynamic random access memory region, and so forth.
摘要:
Disclosed herein is a DRAM memory cell featuring a reduced size, increased retention time, and compatibility with standard logic manufacturing processes, making it well-suited for use as embedded DRAM. The memory cell disclosed herein includes a pass-gate transistor and a storage region. The transistor includes a gate and a drain. The storage region includes a trench, which is preferably a Shallow Trench Isolation (STI). A non-insulating structure, e.g., formed of polysilicon or metal, is located in the trench as serves as a capacitor node. The trench is partially defined by a doped sidewall that serves as a source for the transistor. The poly structure and the trench sidewall are separated by a dielectric layer. The write operation involves charge transport to the non-insulating structure by direct tunneling through the dielectric layer. The read operation is assisted by Gate Induced Drain Leakage (GIDL) current generated on the surface of the sidewall.
摘要:
The types of quasi-planar CMOS and FinFET-like transistor devices on a bulk silicon substrate are disclosed. A first device has a doped and recessed channel formed in a shallow trench sidewall. A second device has a doped, recessed channel and has a plurality of edge-fins juxtaposed on an edge of an active region of the device. A third device has an undoped recessed channel formed in a sidewall of a shallow trench, wherein the undoped recessed channel further has a plurality of edge-fins disposed thereon. Additionally, an extra mask may be added to each device to allow for fabrication of both conventional transistors and FinFET-like transistors on bulk silicon. The extra mask may protect the source and drain areas from recess etching of the silicon substrate. Several methods of fabricating each device are also disclosed.