摘要:
Methods and apparatus are disclosed for manufacturing metal-insulator-metal (MIM) capacitors. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, which has a bottle neck. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, in contact with a sidewall of a via. The sidewall contact or the bottle neck of the electrode may burn out to form a high impedance path when the leakage current exceeds a specification, while the sidewall contact or the bottle neck of the electrode has no impact for normal MIM operations. The MIM capacitors may be used as decoupling capacitors.
摘要:
Methods and apparatus are disclosed for manufacturing metal-insulator-metal (MIM) capacitors. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, which has a bottle neck. The MIM capacitors may comprise an electrode, which may be a top or bottom electrode, in contact with a sidewall of a via. The sidewall contact or the bottle neck of the electrode may burn out to form a high impedance path when the leakage current exceeds a specification, while the sidewall contact or the bottle neck of the electrode has no impact for normal MIM operations. The MIM capacitors may be used as decoupling capacitors.
摘要:
A device includes a drain, a source, and a gate stack. The gate stack has a gate dielectric layer, a gate conductive layer immediately on top of the gate dielectric layer, and first gate and a second gate layer that are immediately on top of the gate conductive layer. The first gate layer has a first resistance higher than a second resistance of the second gate layer. The second gate layer is conductive, is electrically coupled with the gate conductive layer, and has a contact terminal configured to serve as a gate contact terminal for the device. Fabrication methods of the gate stack are also disclosed.
摘要:
An electrostatic discharge (ESD) protection circuit structure includes a dual directional silicon controlled rectifier (SCR) formed in a substrate. The SCR includes first and second P-wells laterally interposed by an N-well. A deep N-well is disposed underneath the P-wells and the N-well. First and second N-type regions are disposed in the first and second P-wells, respectively, and are coupled to a pair of pads. First and second P-type regions are disposed in the first and second P-wells, respectively, are coupled to the pads, and are disposed closer to the N-well than the first and second N-type regions, respectively.
摘要:
Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
摘要:
Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
摘要:
Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
摘要:
An ESD protection circuit includes a pad of an IC, circuitry coupled to the pad for buffering data, an RC power clamp on the IC, and first and second silicon controlled rectifier (SCR) circuits. The RC power clamp is coupled between a positive power supply terminal and a ground terminal. The first SCR circuit is coupled between the pad and the positive power supply terminal. The first SCR circuit has a first trigger input coupled to the RC power clamp circuit. The second SCR circuit is coupled between the pad and the ground terminal. The second SCR circuit has a second trigger input coupled to the RC power clamp circuit. At least one of the SCR circuits includes a gated diode configured to selectively provide a short or relatively conductive electrical path between the pad and one of the positive power supply terminal and the ground terminal.
摘要:
Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.