摘要:
A method of manufacturing a semiconductor device includes forming first and second gate structures on a substrate in first and second regions, respectively, forming a first capping layer on the substrate by a first high density plasma process, such that the first capping layer covers the first and second gate structures except for sidewalls thereof, removing a portion of the first capping layer in the first region, removing an upper portion of the substrate in the first region using the first gate structure as an etching mask to form a first trench, and forming a first epitaxial layer to fill the first trench.
摘要:
A method for manufacturing a semiconductor may include providing a substrate having first and second regions defined therein, forming an interlayer dielectric layer including first and second trenches formed in the first and second regions, respectively, and conformally forming a gate dielectric layer along a top surface of the interlayer dielectric layer, side and bottom surfaces of the first trench and side, and bottom surfaces of the second trench. An etch stop dielectric layer may be formed on the gate dielectric layer, a first metal layer may be formed to fill the first and second trenches, and the first metal layer in the first region may be removed using the etch stop dielectric layer as an etch stopper.
摘要:
A non-volatile memory device may include a first wordline on a substrate, an insulating layer on the first wordline, and a second wordline on the insulating layer so that the insulating layer is between the first and second wordlines. A bit pillar may extend adjacent the first wordline, the insulating layer, and the second wordline in a direction perpendicular with respect to a surface of the substrate, and the bit pillar may be electrically conductive. In addition, a first memory cell may include a first resistance changeable element electrically coupled between the first wordline and the bit pillar, and a second memory cell may include a second resistance changeable element electrically coupled between the second wordline and the bit pillar. Related methods and systems are also discussed.
摘要:
A method of manufacturing a semiconductor device includes forming first and second gate structures on a substrate in first and second regions, respectively, forming a first capping layer on the substrate by a first high density plasma process, such that the first capping layer covers the first and second gate structures except for sidewalls thereof, removing a portion of the first capping layer in the first region, removing an upper portion of the substrate in the first region using the first gate structure as an etching mask to form a first trench, and forming a first epitaxial layer to fill the first trench.
摘要:
A method of forming a transistor induces stress in the channel region using a stress memorization technique (SMT). Impurities are implanted into a substrate adjacent a gate electrode structure to produce an amorphous region adjacent the channel region. The amorphous region is then recrystallized by forming a metal-oxide layer over the amorphous region, and then thermally treating the same. The crystallization creates compressive stress in the amorphous region. As a result, stress is induced in the channel region of the substrate located under the gate electrode structure.
摘要:
The memory device includes a first tunnel insulation layer pattern on a semiconductor substrate, a second tunnel insulation layer pattern having an energy band gap lower than that of the first tunnel insulation layer pattern on the first tunnel insulation layer pattern, a charge trapping layer pattern on the second tunnel insulation layer pattern, a blocking layer pattern on the charge trapping layer pattern, and a gate electrode on the blocking layer pattern. The memory device further includes a source/drain region at an upper portion of the semiconductor substrate. The upper portion of the semiconductor substrate is adjacent to the first tunnel insulation layer pattern.
摘要:
Example embodiments provide a non-volatile semiconductor memory device and method of forming the same. The non-volatile memory device may include a tunnel insulation layer on a semiconductor substrate, a charge storage layer on the tunnel insulation layer, a first blocking insulation layer on the charge storage layer, and a gate electrode on the first blocking insulation layer, wherein the gate electrode includes aluminum and the first blocking insulation layer does not include aluminum.
摘要:
A method of manufacturing a gate electrode of a MOS transistor including a tungsten carbon nitride layer is disclosed. After a high dielectric layer is formed on a substrate, a source gas including tungsten amine derivative flows onto the high dielectric layer. A tungsten carbon nitride layer is formed on the high dielectric layer by decomposing the source gas. Thereafter, a gate electrode is formed by patterning the tungsten carbon nitride layer. According to the present invention, a gate electrode having a work function of over 4.9 eV is formed.
摘要:
In a semiconductor device with dual gates and a method of manufacturing the same, a dielectric layer and first and second metallic conductive layers are successively formed on the semiconductor substrate having first and second regions. The second metallic conductive layer which is formed on the first metallic conductive layer of the second region is etched to form a metal pattern. The first metallic conductive layer is etched using the metal pattern as an etching mask. A polysilicon layer is formed on the dielectric layer and the metal pattern. The first gate electrode is formed by etching portions of the polysilicon layer, the metal pattern, and the first metallic conductive layer of the first region. The second gate electrode is formed by etching a portion of the polysilicon layer formed directly on the dielectric layer of the second region.
摘要:
A semiconductor device having a dual gate is formed on a substrate having a dielectric layer. A first metallic conductive layer is formed on the dielectric layer to a first thickness, and annealed to have a reduced etching rate. A second metallic conductive layer is formed on the first metallic conductive layer to a second thickness that is greater than the first thickness. A portion of the second metallic conductive layer formed in a second area of the substrate is removed using an etching selectivity. A first gate structure having a first metallic gate including the first and the second metallic conductive layers is formed in a first area of the substrate. A second gate structure having a second metallic gate is formed in the second area. A gate dielectric layer is not exposed to an etching chemical due to the first metallic conductive layer, so its dielectric characteristics are not degraded.