Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: an inner electrode having an inner current collector and an inner electrode active material layer surrounding the outer surface of the inner current collector; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer and having an outer electrode active material layer and an open-structured outer current collector.
Abstract:
A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery.
Abstract:
Disclosed is a cable-type secondary battery including an inner electrode including an inner current collector and an inner electrode active material layer formed surrounding an outer surface of the inner current collector, a separation layer formed surrounding an outer surface of the inner electrode to insert the inner electrode inside, an outer electrode active material structure formed surrounding an outer surface of the separation layer to insert the separation layer inside, the outer electrode active material structure including a porous polymer support and an outer electrode active material layer formed on at least one of an upper surface and a lower surface of the porous polymer support, and an outer electrode including an outer current collector formed surrounding the outer electrode active material structure to insert the outer electrode active material structure inside.
Abstract:
The present disclosure relates to a packaging for a cable-type secondary battery, surrounding an electrode assembly in the cable-type secondary battery, the packaging having a moisture-blocking layer comprising sealant polymer layers on both outer surfaces of a moisture-blocking film and a moisture-blocking film disposed between the sealant polymer layers, wherein the moisture-blocking layer is a tube form surrounding the electrode assembly, and the sealant polymer layers in both ends of the moisture-blocking layer are overlapped and adhered with each other in a predetermined part. The packaging according to the present disclosure can be used in a cable-type secondary battery to block moisture from being infiltrated into an electrode assembly, thereby improving the life characteristics of the battery and preventing the deterioration of battery performances.
Abstract:
A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery.
Abstract:
The present invention relates to an anode for a cable-type secondary battery, more specifically an anode for a cable-type secondary battery, comprising a spiral electrode consisting of at least two wire-type electrodes which are spirally twisted with each other, each of the wire-type electrodes comprising a wire-type current collector, an anode active material layer formed by coating on the outer surface of the wire-type current collector, and a polymer resin layer formed by coating on the outer surface of the anode active material layer; and a cable-type secondary battery comprising the anode.The anode for a cable-type secondary battery according to the present invention comprises a polymer resin layer formed by coating on the outer surface of an anode active material layer, thereby preventing the release of the anode active material layer from a wire-type current collector and eventually preventing the deterioration of battery performances.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode supporter; and a sheet-form laminate of inner electrode-separation layer-outer electrode, spirally wound on the outer surface of the inner electrode supporter, wherein the laminate of inner electrode-separation layer-outer electrode is formed by carrying out compression for the integration of an inner electrode, a separation layer for preventing a short circuit, and an outer electrode. In the cable-type secondary battery of the present disclosure, since the electrodes and the separation layer are adhered to each other and integrated, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
A cable-type secondary battery, includes an electrode assembly including first and second polarity electrodes with a thin and long shape, each electrode having a current collector whose cross-section perpendicular to its longitudinal direction is a circular, asymmetrical oval or polygonal shape, and an electrode active material applied onto the surface of the current collector, and a separator or an electrolyte layer interposed between the first and second polarity electrodes; and a cover member surrounding the electrode assembly. Also, the cable-type secondary battery is provided with a first polarity terminal and a second polarity terminal connected to the first polarity electrode and the second polarity electrode, respectively, at the end of the cable-type secondary battery; and a housing cap configured to fix the first and second polarity terminals and cover the end of the cable-type secondary battery.