Abstract:
Apparatus and methods are disclosed, such as a method that includes precharging channel material of a string of memory cells in an unselected sub-block of a block of memory cells to a precharge voltage during a first portion of a programming operation. A programming voltage can then be applied to a selected memory cell in a selected sub-block of the block of memory cells during a second portion of the programming operation. The selected memory cell is coupled to a same access line as an unselected memory cell in the unselected sub-block. Additional methods and apparatus are disclosed.
Abstract:
Methods of operating memory devices including precharging an adjacent pair of data lines to a particular voltage, isolating one data line of the adjacent pair of data lines from the particular voltage while maintaining the other data line of the adjacent pair of data lines at the particular voltage, and selectively discharging the one data line depending upon a data value of a selected memory cell of a string of memory cells associated with the one data line.
Abstract:
Apparatus and methods are disclosed, such as a method that includes precharging channel material of a string of memory cells in an unselected sub-block of a block of memory cells to a precharge voltage during a first portion of a programming operation. A programming voltage can then be applied to a selected memory cell in a selected sub-block of the block of memory cells during a second portion of the programming operation. The selected memory cell is coupled to a same access line as an unselected memory cell in the unselected sub-block. Additional methods and apparatus are disclosed.
Abstract:
Conductive structures include stair step structures positioned along a length of the conductive structure and at least one landing comprising at least one via extending through the conductive structure. The at least one landing is positioned between a first stair step structure of the stair step structures and a second stair step structure of the stair step structures. Devices may include such conductive structures. Systems may include a semiconductor device and stair step structures separated by at least one landing having at least one via formed in the at least one landing. Methods of forming conductive structures include forming at least one via through a landing positioned between stair step structures.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a data line, a first memory cell string including first memory cells located in different levels of the apparatus, first access lines to access the first memory cells, a first select gate coupled between the data line and the first memory cell string, a first select line to control the first select gate, a second memory cell string including second memory cells located in different levels of the apparatus, second access lines to access the second memory cells, the second access lines being electrically separated from the first access lines, a second select gate coupled between the data line and the second memory cell string, a second select line to control the second select gate, and the first select line being in electrical contact with the second select line.
Abstract:
Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first pillar of a first memory cell string; a second pillar of a second memory cell string; a first conductive structure extending in a first direction, the first conductive structure located over and in electrical contact with the first pillar; a second conductive structure extending in the first direction, the second conductive structure located over and in electrical contact with the second pillar; a select gate coupled to the first and second memory cell strings; a first data line located on a first level of the apparatus and extending in a second direction, the first data line located over the first conductive structure and in electrical contact with the first conductive structure; and a second data line located on a second level of the apparatus and extending in the second direction, the second data line located over the second conductive structure and in electrical contact with the second conductive structure.
Abstract:
Conductive structures include stair step structures positioned along a length of the conductive structure and at least one landing comprising at least one via extending through the conductive structure. The at least one landing is positioned between a first stair step structure of the stair step structures and a second stair step structure of the stair step structures. Devices may include such conductive structures. Systems may include a semiconductor device and stair step structures separated by at least one landing having at least one via formed in the at least one landing. Methods of forming conductive structures include forming at least one via through a landing positioned between stair step structures.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a first memory cell string; a second memory cell string; a first group of conductive lines to access the first and second memory cell strings; a second group of conductive lines; a group of transistors, each transistor of the group of transistors coupled between a respective conductive line of the first group of conductive lines and a respective conductive line of the second group of conductive lines, the group of transistors having a common gate; and a circuit including a first transistor and a second transistor coupled in series between a first node and a second node, the first transistor including a gate coupled to the second node, and a third transistor coupled between the second node and the common gate.
Abstract:
Methods for programming sense flags may include programming memory cells coupled to first data lines in a main memory array, and programming memory cells coupled to second data lines in the main memory array while programming memory cells coupled to data lines in a flag memory array with flag data indicative of the memory cells coupled to the second data lines being programmed. Methods for sensing flags may include performing a sense operation on memory cells coupled to first data lines of a main memory array and memory cells coupled to data lines of a flag memory array, and determining a program indication of memory cells coupled to second data lines of the main memory array from the sense operation performed on the memory cells coupled to the data lines of the flag memory array.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a data line, a first memory cell string including first memory cells located in different levels of the apparatus, first access lines to access the first memory cells, a first select gate coupled between the data line and the first memory cell string, a first select line to control the first select gate, a second memory cell string including second memory cells located in different levels of the apparatus, second access lines to access the second memory cells, the second access lines being electrically separated from the first access lines, a second select gate coupled between the data line and the second memory cell string, a second select line to control the second select gate, and the first select line being in electrical contact with the second select line.