Abstract:
An analog multiplier 11 raises a base reference voltage “Vref0” to the nth power so that a reference voltage “Vref1” is produced. Analog multipliers 12 and 13 sequentially raise the reference voltage “Vref1” to the nth power so that reference voltages “Vref2” and “Vref3” are produced. Switch groups 38-41 control the reference voltages “Vref0” to “Vref3”, which are then sent to an analog multiplier 14 together with an input voltage “Vin”. A comparator 14 sequentially compares a multiplication result “Vx” of the multiplier 14 with a voltage “Vout” outputted from a sensor circuit 2, so that a digital output value “Dout” is produced. The analog multiplier 14 is set as appropriate.
Abstract:
A displacement measurement apparatus for a microstructure according to the present invention measures a displacement of the microstructure having a fixed portion electrode including a first electrode and a second electrode and a movable portion electrode located oppositely to the fixed portion electrode. A bias generating circuit applies a bias signal to between the first electrode and the movable portion electrode so that influence of a noise signal on a detection signal picked up from between the second electrode and the movable portion electrode may be reduced. A C/V converting circuit converts a capacitance change that is picked up from between the second electrode and the movable portion electrode into a voltage. A detecting circuit detects a displacement of the movable portion electrode based on the voltage.
Abstract translation:根据本发明的用于微结构的位移测量装置测量具有包括第一电极和第二电极的固定部分电极和位于与固定部分电极相对的可动部电极的微结构的位移。 偏置产生电路将偏置信号施加到第一电极和可动部分电极之间,从而可以减少噪声信号对从第二电极和可动部分电极之间拾取的检测信号的影响。 C / V转换电路将从第二电极和可动部分电极之间拾取的电容变化转换为电压。 检测电路基于电压检测可动部分电极的位移。
Abstract:
An inspecting method which is for a microstructure with a movable portion and executes a highly precise inspection without damaging a probe or an inspection electrode by supressing the effect of a needle pressure in contacting the probe to the inspection electrode is provided.When inspection on a microstructure is performed, first a pair of probes (2) are caused to contact respective electrode pads (PD), and the pair of probes (2) and a fritting power source (50) are connected together through relays (30). Next a voltage is applied from the fritting power source (50) to one probe (2) in the pair of probes (2). As the voltage is gradually increased, an oxide film between the pair of probes (2) is destroyed and a current flows between the pair of probes (2) by fritting phenomenon, and the probes (2) and the electrode pad (PD) are electrically conducted each other. Subsequently, the pair of probes (2) are switched to a measuring unit (40) side from the fritting power source (50) through the relays (30), and electrically connected to the measuring unit (40).
Abstract:
An electric potential fixing apparatus of the present invention is an electric potential fixing apparatus that is connected to a connection line (17) between two capacitances, the first capacitance (14) and the second capacitance (15) that is directly connected to the first capacitance, includes the first high resistance (3), the second high resistance (4) that is connected directly to the first high resistance, a voltage dividing unit that outputs electric potential divided by the first high resistance and the second high resistance to the output terminal, the third capacitance (8) that is connected in parallel to at least either of the first high resistance and the second high resistance, and a voltage supply unit (1) operable to maintain constantly electric potential of the connection line between the two capacitances (14) and (15), holding combined total electric charge quantity of the first capacitance and the second capacitance, and the output terminal of the voltage supply unit is connected to a signal line between the two capacitances.
Abstract:
In a semiconductor device a substrate is formed in a rectangular shape having four edges along dicing lines, and a jetty portion is formed so as to surround an actuator element and an electrode pad for signal input and output. The jetty portion is a rectangular shape having four sides and each side continuously extends along each edge of the substrate in parallel. A foreign object generated when dicing process is performed, is prevented from attaching onto the actuator element and the electrode pad because close adhesion of a protecting tape is improved by the jetty portion.
Abstract:
A probe, wherein a beam 3 is cantilevered by a supporter 2 with a predetermined space from a probe substrate 1, and a contact 4 extending in a direction away from the probe substrate 1 is attached to the beam 3. A projection 5 extending toward the probe substrate 1 is formed on the beam 3. Since the projection 5 is brought into contact with the probe substrate 1 when a load is applied to the probe substrate 1, stress imposed on the beam 3 can be dispersed.
Abstract:
A through substrate which comprises a silicon substrate (10) having a through hole (19) penetrating a front surface (11) and a back surface (12), a oxidized silicon film (13) being provided along the inner wall surface of the through hole (19), layers (14, 15) comprising Zn and Cu, respectively, being formed on the inner wall surface of the oxidized silicon film (13), and a Cu plating layer (18) which has been grown from a Cu seed layer (17) along the inner wall surface of layers (14, 15) comprising Zn and Cu, respectively, via an insulating layer (16) between them. The above through substrate can provide a through electrode capable of avoiding the noise due to the cross talk.
Abstract:
A capacity detection type sensor element includes a rectangular vibrating plate, a flat back electrode which are provided opposedly with each other, and fixing portions which are provided adjoining to the vibrating plate, and has a predetermined length A of edge at a side adjoining to the vibrating plate. The back electrode is held by the fixing portions in a state that space is provided between the back electrode and the vibrating plate. Outer edges of the back electrode which are not held by the adjoining fixing portions, are straight lines and the straight lines define an octagonal shape as a whole.
Abstract:
An analog multiplier 11 raises a base reference voltage “Vref0” to the nth power so that a reference voltage “Vref1” is produced. Analog multipliers 12 and 13 sequentially raise the reference voltage “Vref1” to the nth power so that reference voltages “Vref2” and “Vref3” are produced. Switch groups 38-41 control the reference voltages “Vref0” to “Vref3”, which are then sent to an analog multiplier 14 together with an input voltage “Vin”. A comparator 14 sequentially compares a multiplication result “Vx” of the multiplier 14 with a voltage “Vout” outputted from a sensor circuit 2, so that a digital output value “Dout” is produced. The analog multiplier 14 is set as appropriate.
Abstract:
An electrostatic capacitance detection circuit 10 comprises a DC voltage generator 11, an operational amplifier 14 of which non-inverting input terminal is connected to specific potential, an impedance converter 16, a resistance (R1) 12 connected between the DC voltage generator 11 and an inverting input terminal of the operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the operational amplifier 14 and an output terminal of the impedance converter 16, and a capacitor 15 connected between an output terminal of the operational amplifier 14 and an input terminal of the impedance converter 16. A capacitor to be detected 17 is connected between the input terminal of the impedance converter 16 and specific potential.