摘要:
Disclosed is a process for producing a rubber-based composite material, including the steps of forming, by sputtering, an adhesion film on a substrate to be mated with a rubber for constituting the composite material, laminating a rubber composition on the adhesion film, and vulcanizing the rubber composition, the sputtering is conducted by using a first target and a second target, composed of different metallic components and provided in a chamber, while moving the substrate in sputtering atmospheres formed by applying electric power simultaneously to the first and second targets. Also disclosed is a process for producing a rubber-based composite material, including the steps of forming, by sputtering, an adhesion film on a substrate to be mated with a rubber for constituting the composite material, laminating a rubber composition on the adhesion film, and vulcanizing the rubber composition, wherein the sputtering is conducted by using a plurality of targets, composed of metals or metallic compounds containing different metallic elements and provided in a chamber, while rotating the substrate in sputtering atmospheres formed by applying electric power simultaneously to the targets.
摘要:
The present invention provides a semiconductor electrode of organic dye-sensitized metal oxide having a semiconductor layer of metal oxide that can be easily prepared, and an organic dye-sensitized solar cell. The semiconductor electrode of organic dye-sensitized metal oxide comprises a substrate having a transparent electrode thereon, a semiconductor layer of metal oxide provided on the electrode and an organic dye absorbed on a surface of the semiconductor layer, the semiconductor layer being formed by a vapor deposition process.
摘要:
A crystalline ITO transparent conductive thin film is formed by heating a substrate at low temperature during the sputtering film formation. The crystalline ITO transparent conductive thin film is formed by using an ITO target comprising In2O3 and SnO2 where a weight percentage of SnO2 is 6% or less based on the total weight of In2O3 and SnO2 in the ITO target, and heating the substrate at 90 to 170° C. during the sputtering film formation. The crystalline ITO film with high strength and mechanical durability can be formed by heating at low temperature, which meets heat resistance of the substrate, without requiring annealing after the film formation. There are provided a transparent conductive film comprising a polymer film 4 and an ITO transparent conductive film 5 formed thereon, and a touch panel comprising the transparent conductive film.
摘要翻译:通过在溅射成膜期间在低温下加热基板来形成结晶ITO透明导电薄膜。 结晶ITO透明导电薄膜通过使用包含In 2 N 3 O 3和SnO 2 2的ITO靶形成,其中SnO 2的重量百分比 基于ITO靶中的In 2 N 3 O 3和SnO 2 N 2的总重量,SUB> 2 <6%或更小 在溅射成膜期间在90〜170℃下加热基板。 具有高强度和机械耐久性的结晶ITO膜可以通过在低温下加热而形成,其满足基板的耐热性,而不需要在成膜后退火。 提供了包含聚合物膜4和形成在其上的ITO透明导电膜5的透明导电膜,以及包括透明导电膜的触摸面板。
摘要:
In a first aspect of the invention, an image display device, in which one or more groups of particles or liquid powders are sealed between opposed two substrates, at least one of two substrates being transparent, and, in which the particles or the liquid powders, to which an electrostatic field produced by two groups of electrodes having different potentials is applied, are made to move so as to display an image, has a construction such that a member for transmitting a signal, which is applied to circuits for an image display, is provided to the substrate by means of an anisotropic conductive film and members such as the electrode are provided to a substrate opposed to a transparent substrate. In second to sixth aspects of the invention, an image display device has a construction such that the electrode is arranged to a surface of the substrate through a transparent elastic member, or, an anti-reflection layer is arranged, or, a connection operation between two substrates through a partition wall is optimized.
摘要:
An electrolyte for dye-sensitized solar cells, wherein an oxidation-reduction substance is carried by a vulcanized rubber, a phosphazene polymer, a porous body comprising a high molecular material which has a three-dimensional continuous network skeleton structure, or an EVA resin film. A dye-sensitized solar cell comprising dye-sensitized semiconductor electrodes 2, 3, a counter electrode 4 arranged at an opposed position to the electrodes, and an electrolyte 6 between the electrodes 2, 3 and the electrode 4. A solid electrolyte for dye-sensitized solar cells effective in improving the generation efficiency, durability, and safety of dye-sensitized solar cells and can be manufactured inexpensively.
摘要:
An acid-resistant transparent electroconductive substrate with an ITO layer includes a transparent base and the ITO layer formed over the transparent base. The ITO layer contains at least 30 percent by weight of tin oxide. A dye-sensitized solar cell electrode includes the transparent electroconductive substrate and a dye-adsorbed semiconductor layer formed over the ITO layer of the transparent electroconductive substrate. A dye-sensitized solar cell is provided which uses the dye-sensitized solar cell electrode as a dye-sensitized semiconductor electrode. A SnO2 content of 30 percent by weight or more enhances acid resistance. The dye-sensitized semiconductor electrode for the dye-sensitized solar cell is prepared by forming a layer-by-layer self-assembled film on the ITO layer by a layer-by-layer assembly technique, forming a replica layer by acid-treating the layer-by-layer self-assembled film to form irregularities, and forming a semiconductor layer on the replica layer.
摘要:
A method for forming a porous thin film is characterized by formation of a composite thin film on a substrate, in which film a metal portion composed of a first metal component and a metal compound portion composed of a compound of a second metal component which is different from the first metal component are mixed-dispersed, and following lo removal of the metal portion from the composite thin film. A method for forming a porous thin film is alternatively characterized by formation of a composite thin film on a substrate, in which film a first metal portion composed of a first metal component and a second metal portion composed of a second metal component which is different from the first metal component are mixed-dispersed, and following removal of either one of the metal portions from the composite thin film.
摘要:
Disclosed is a semiconductor electrode which comprises a transparent electrode that is arranged on the surface of a light-transmitting substrate. The transparent electrode is provided with a metal oxide layer on a surface that is on the reverse side of a surface that is in contact with the substrate. The metal oxide layer contains fine silicon particles, which absorb a specific wavelength (11), and fine metal oxide particles. The fine silicon particles are arranged between the fine metal oxide particles.
摘要:
An antireflection film is formed by laminating a hard coat layer 2, a high refractive index layer 3, and a low refractive index layer 4 in that order on a transparent base film 1. Alternatively, an antireflection film is formed by laminating an electrically conductive high refractive index hard coat layer and a low refractive index layer in that order on a transparent base film. The low refractive index layer 4 is composed of a coating film cured by ultraviolet irradiation in an atmosphere having an oxygen concentration of 0 to 10,000 ppm, the coating film containing hollow silica fine particles, a polyfunctional (meth)acrylic compound, and a photopolymerization initiator.
摘要:
An antireflective film includes a base film, a hard coat layer provided on the base film, a layer having a relatively high refractive index and provided on the hard coat layer, and an outermost layer having a low refractive index and provided on the layer having the relatively high refractive index. In the antireflective film, the layer disposed adjacent to the outermost layer has a light-absorbing property. The layer disposed adjacent to the outermost layer includes carbon black, titanium black, fine metal particles, or an organic dye. The attenuation coefficient k at light having a wavelength of 550 nm of the layer disposed adjacent to the outermost layer is represented by 0.1