Abstract:
A delta-sigma modulator has a first summing point subtracting a first feedback signal from an input signal and forwarding a result to a transfer function, a second summing point adding an output signal from said transfer function to the input signal and subtracting a second feedback signal, a first integrator receiving an output signal from the second summing point, a quantizer receiving an output signal from the integrator and generating an output bitstream, and a digital-to-analog converter receiving the bitstream, wherein the first and second feedback signal are the output signal from said digital-to-analog converter delayed by a one sample delay.
Abstract:
A digital-to analog converter (DAC) of the charge transfer type can be used in a sigma delta modulator for generating N output levels, wherein an output level is defined by a respective amount of charge transferred by the DAC. The DAC has a first capacitor switch unit receiving a reference voltage and a first digital input value to transfer first output charges, at least one second capacitor switch unit receiving the reference voltage and a second digital input value, wherein an output of the second capacitor switch unit is coupled in parallel with an output of the first capacitor switch unit to generate a sum of first and second transferred output charges; and a sequencer controlling switches of the first and second capacitor switch units wherein switching sequences according to individual first and second digital input values are provided for every DAC input value to generate the N output levels.
Abstract:
An analog front end (AFE) device has at least one programmable analog-to-digital converter (ADC) and a serial interface switchable to operate in a bidirectional serial interface mode and in a unidirectional two wire serial interface mode, wherein the unidirectional two wire serial interface mode only uses a clock input and a data output signal line, wherein the ADC operates in the unidirectional two wire serial interface mode synchronous with a clock supplied to the clock input.
Abstract:
A device and method for sigma-delta modulation may include an input signal and a plurality of integrators. The output of the integrators and a data input may be input to an adder, the sum output to be input to a quantizer to generate a quantized output signal. A reset input to the first integrator may be asserted during a first sample of the quantized output signal to reduce the signal discontinuity at the input of the first integrator, which improves the stability of the sigma-delta modulator.
Abstract:
An apparatus such as a node in a daisy chain of electronic devices includes a serial data input port receive input from an electronic device in the daisy chain. The apparatus includes a serial data output port to send output to another electronic device in the daisy chain. The apparatus includes a chip select input port configured to receive input from a master control unit, and an interface circuit configured to, in a daisy chain streaming mode, and based on a received command and changed edge of a signal on the chip select input port, repeatedly: read data from a data source of the apparatus to yield data, output the data to the serial data output port, and copy other data received at the serial data input port to the serial data output port after the data.
Abstract:
A node in a daisy chain includes a serial data input port configured to receive input from an electronic device, a serial data output port configured to send output to another electronic device, a chip select input port configured to receive input from a master control unit, a timer, and an interface circuit. The interface circuit may be configured to, in a daisy chain mode, copy data received at the serial data input port to the serial data output port, and upon receipt of a changed edge of a chip select signal on the chip select input port, initiate the timer. The interface circuit may be configured to, upon the completion of a time to be determined by the timer, enter the daisy chain mode.
Abstract:
An analog to digital converter (ADC) includes voltage and reference input terminals, a buffer circuit, and control logic. The buffer circuit includes input and output terminals and a variable resistor including resistive branches connected in parallel. The control logic is configured to, in a calibration phase, determine a given gain value for which gain error is to be calibrated, determine a set of the resistive branches in the buffer circuit to be used to achieve the given gain value, successively enable a different resistive branch of the variable resistor of the set until all resistive branches of the set have been enabled, determine an output code resulting after enabling all resistive branches of the set, and, from the output code, determine a gain error of the given gain value. The control logic is further configured to take corrective action based upon the gain error of the given gain value.
Abstract:
A charge transfer digital-to-analog converter includes a differential reference voltage, a pair of capacitors, and switches including a shorting switch. The switches are configured to be switched in successive phases to generate a charge transfer through the capacitors to generate an output corresponding to a digital input. The specific switches activated and deactivated in each phase are selected according to the digital input. Each capacitor of the pair of capacitors is connected to a respective pin for the output. The shorting switch is configured to short the pair of capacitors to create a zero-differential charge on a first side of the capacitors. The shorting switch is implemented with a bootstrap circuit to maintain a constant common mode voltage of the first side of the capacitors while the shorting switch is activated.
Abstract:
A sigma-delta analog to digital converter (ADC) includes an M-bit digital-to-analog converter (DAC); a loop filter coupled to receive an output from DAC; and a variable level quantizer configured to provide a uniform quantization function by switching between an N-level quantizer function and an N−1 level quantizer function.
Abstract:
An input stage for a switched capacitor analog-to-digital converter has a differential voltage input receiving an input voltage, a differential reference voltage input receiving a chopped reference voltage, a common voltage connection, and a differential output. A pair of input capacitors is coupled between the differential voltage input and the differential output and a pair of reference capacitors is coupled between the differential reference voltage input. A switching unit is controlled by a first and second phase operable during the first phase to connect a first terminal of the input capacitors with the common voltage connection and couple the first terminal of the reference capacitors with the inverted differential voltage reference; and during a second phase to connect the first terminal of the input capacitors with the differential input voltage and couple the first terminal of the reference capacitors with the non-inverted differential voltage reference