Abstract:
Electric heating/warming composite fabric articles have at least a first fabric layer, a second fabric layer, and a planar, sheet-form conductive layer element interposed between the first and second fabric layers. The conductive layer element includes a conductive textile that is formed as a continuous circuit that includes a plurality of elongated branches. The conductive textile is formed of conductive yarns and/or fibers. Methods of forming electric heating/warming fabric articles are described and claimed.
Abstract:
A velour fabric article consists of a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn. The filament stitch yarn includes a heat sensitive material, e.g. a hot melt material or a heat shrinkable material, and/or an elastomeric material, such as spandex. The loop yarn includes flame retardant material, such as M-Aramide fiber. The fabric body has a velour surface formed at one or both of the technical back and the technical face. Raised fibers of at least one of the technical face and the technical back may be entangled, including in and/or through interstices of the fabric body, toward the other of the technical face and the technical back, e.g., by a hydroentanglement process applied after finishing. The fabric body has permeability of about 90 ft3/ft2/min, or less, under a pressure difference of ½ inch of water across the fabric body.
Abstract:
A textile fabric includes a smooth surface with one or more regions having coating material exhibiting thermal expansion or contraction in response to change in temperature, adjusting insulation performance of the textile fabric in response to ambient conditions.
Abstract:
A textile fabric has at least one raised surface incorporating multicomponent fibers formed of at least a first material and a second material disposed in side-by-side relationship. The first material and the second material exhibit differential thermal elongation, which causes the multicomponent fibers to bend or curl and reversibly recover in response to changes in temperature, thereby adjusting insulation performance of the textile fabric in response to ambient conditions.
Abstract:
Electric heating/warming composite fabric articles have at least a fabric layer having inner and outer surfaces, and an electric heating/warming element, e.g., including a bus, formed, e.g., of die cut metallized textile or plastic sheeting or metal foil, affixed at a surface of the fabric layer and adapted to generate heating/warming when connected to a power source. A air-and-water droplet resistant and water vapor permeable barrier layer may be positioned, for example, adjacent to the fabric layer; e.g., with the electric heating/warming element formed thereupon or at least partially impregnated therein, e.g. in a fabric laminate or in a composite formed by application of heat and pressure to at least one layer of a barrier film disposed adjacent thereto, including to protect the electric circuit, e.g. against abrasion, moisture, and or against physical stress due, e.g., to repeated crushing, bending or flexing. Methods of forming electric heating/warming composite fabric articles are described and claimed.
Abstract:
A fabric article that generates heat upon application of electrical power is formed, for example, by knitting or weaving, to form a fabric prebody. An electrical resistance heating element in the form of a conductive yarn is incorporated into the fabric prebody, e.g., laid in, e.g., in the knit-welt or tuck-welt configuration, the electrical resistance heating elements extending between opposite edge regions of the fabric. Conductive elements are provided for connecting the electrical resistance heating elements to a source of electrical power.
Abstract:
Electric heating/warming composite fabric articles have at least a fabric layer having inner and outer surfaces, and an electric heating/warming element, formed, e.g., of die cut metallized textile or plastic sheeting or metal foil, affixed at a surface of the fabric layer and adapted to generate heating/warming when connected to a power source. A air-and-water droplet resistant and water vapor permeable barrier layer may be positioned, for example, adjacent to the fabric layer; e.g., with the electric heating/warming element formed thereupon or at least partially impregnated therein, e.g. in a fabric laminate or in a composite formed by application of heat and pressure to at least one layer of a barrier film disposed adjacent thereto, including to protect the electric circuit, e.g. against abrasion, moisture, and or against physical stress due, e.g., to repeated crushing, bending or flexing. Methods of forming electric heating/warming composite fabric articles are also described and claimed.
Abstract:
Electric resistance heating/warming composite fabric articles have a fabric layer having a first surface and an opposite, second surface, and an electric resistance heating/warming element in the form of a conductive yarn mounted upon first surface of the fabric layer, e.g. in embroidery stitching, and adapted to generate heating/warming when connected to a power source. A barrier layer may be positioned, for example, at least adjacent to the first or second surface of the fabric layer. Methods of forming electric resistance heating/warming composite fabric articles are also described.
Abstract:
A composite velour fabric garment includes a laminate consisting of an outer woven shell layer, an inner thermal layer of knit construction, and an intermediate layer disposed between and laminated to each of the shell layer and the thermal layer. The outer woven shell layer contains spandex in at least a weft direction for stretch and recovery in a width direction. The knit construction of the inner thermal layer provides stretch in at least a width direction, in harmony with the shell layer, and the inner thermal layer has a raised surface facing inwardly, away from the shell layer. The intermediate layer has controlled air permeability, including zero air permeability.
Abstract:
A composite fabric garment includes a first garment portion disposed in one or more upper regions of the fabric garment, i.e. those regions relatively more likely in use to be exposed to wind and rain, and a second garment portion disposed in one or more lower regions of the fabric garment, i.e. those regions relatively less likely in use to be exposed to wind and rain. The first garment portion is formed of a first composite fabric having first inner and outer fabric layers and a first intermediate barrier layer disposed between and bonded to at least one of the first inner and outer fabric layers, the first intermediate barrier layer being breathable and substantially impermeable to wind and liquid water. The second garment portion is formed of a second composite fabric formed of second inner and outer fabric layers and having predetermined air permeability. In one embodiment, the second garment portion further includes a second intermediate, breathable, air-permeable barrier layer disposed between and bonded to at least one of the second inner and outer fabric layers. In another embodiment, the second garment portion is formed of a composite fabric having controlled air permeability in a non-laminate absent a barrier.