Abstract:
Systems and methods for fabricating nanostructures using other nanostructures as templates. A method includes mixing a dispersion and a reagent solution. The dispersion includes nanostructures such as nanowires including a first element such as copper. The reagent solution includes a second element such as silver. The second element at least partially replaces the first element in the nanostructures. The nanostructures are optionally washed, filtered, and/or deoxidized.
Abstract:
A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
Abstract:
An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
Abstract:
LED dies, emitting blue light, are provided on a first support substrate to form a light emitting layer. A mixture of a transparent binder, yellow phosphor powder, magenta-colored glass beads, and cyan-colored glass beads is printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are sized so that the tops of the beads protrude completely through the conversion layer. When the LED dies are on, the combination of the yellow phosphor light and the blue LED light creates white light. When the LEDs are off, white ambient light, such as sunlight, causes the conversion layer to appear to be a mixture of yellow light, magenta light, and cyan light. The percentage of the magenta and cyan beads in the mixture is selected to create a desired off-state color, such as a neutral color, of the conversion layer for aesthetic purposes.
Abstract:
An energy storage device includes a printed current collector layer, where the printed current collector layer includes nickel flakes and a current collector conductive carbon additive. The energy storage device includes a printed electrode layer printed over the current collector layer, where the printed electrode layer includes an ionic liquid and an electrode conductive carbon additive. The ionic liquid can include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The current collector conductive carbon can include graphene and the electrode conductive carbon additive can include graphite, graphene, and/or carbon nanotubes.
Abstract:
LED dies are suspended in an ink and printed on a first support substrate to form a light emitting layer having a light emitting surface emitting primary light, such as blue light. A mixture of a transparent binder, phosphor powder, and transparent glass beads is formed as an ink and printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are preferably sized so that the tops of the beads protrude completely through the conversion layer. Some of the primary light passes through the beads with virtually no attenuation or backscattering, and some of the primary light is converted by the phosphor to secondary light. The combination of the secondary light and the primary light passing though the beads may form white light. The overall color is highly controllable by controlling the percentage weight of the beads.
Abstract:
A reflective color display is disclosed. A substrate supports a first conductor layer and pixel wells. A piezoelectric segment is formed in each pixel well over the first conductor layer. A second conductor layer overlies the piezoelectric segments, wherein an electric field created across any piezoelectric segment causes the piezoelectric segment to expand or contract under control of the electric field. A Bragg reflector segment overlies each piezoelectric segment and is compressible by expansion of the underlying piezoelectric segment. A white light LED layer overlies the Bragg reflector segments. By varying the electric field across each piezoelectric segment, the overlying Bragg reflector segment is controlled to reflect a selected wavelength for each pixel of the display. The walls of the pixel wells provide acoustic isolation between adjacent pixel wells. An acoustic membrane isolates the Bragg reflector segment from high frequency vibrations of the piezoelectric segment.
Abstract:
A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. The frustules may include multiple materials. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
Abstract:
A light emitting structure uses an extruded mixture of a fluorescent material and a transparent plastic to form a thin flexible substrate. The extrusion, using a slot die, forms a thin flexible film having very smooth surfaces with a uniform thickness. A transparent first conductive layer is then printed over the substrate. Pre-formed micro-LEDs are then printed over the first conductive layer, where the bottom electrodes of the LEDs contact the first conductive layer. A dielectric layer is deposited between the LEDs and exposes the top electrode of the LEDs. A second conductive layer, which may be transparent or reflective, is printed over the LEDs to electrically connect at least some of the LEDs in parallel. Primary light emitted from the LEDs energizes the fluorescent material in the substrate to emit secondary light from the substrate. Blue LED light may combine with the secondary light to create a wide gamut of colors, such as white.
Abstract:
In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.