Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence. The semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, and an active zone having a p-n junction, which active zone is formed between the first semiconductor region and the second semiconductor region. The semiconductor layer sequence is arranged on a carrier. The semiconductor chip also includes a first contact, which is provided for electrically connecting the first semiconductor region, and a second contact, which is different from the first contact and which is provided for electrically connecting the second semiconductor region. In addition, the semiconductor chip includes a first capacitive electrical element, which is connected in parallel with the p-n junction and which has a first dielectric element.
Abstract:
A composite substrate has a carrier and a utility layer. The utility layer is attached to the carrier by means of a dielectric bonding layer and the carrier contains a radiation conversion material. Other embodiments relate to a semiconductor chip having such a composite substrate, a method for producing a composite substrate and a method for producing a semiconductor chip with a composite substrate.
Abstract:
An optoelectronic semiconductor chip having a semiconductor layer sequence includes at least one active layer that generates primary radiation; a plurality of conversion layers that at least partially absorb the primary radiation and convert the primary radiation into secondary radiation of a longer wavelength than the primary radiation; and a roughened portion that extends at least into one of the conversion layers, wherein the roughened portion has a random structure, the semiconductor layer sequence is arranged on a carrier, a top side of the semiconductor layer sequence facing away from the carrier is formed by the roughened portion, the at least one active layer is located between the carrier and the conversion layers, and the roughened portion includes a plurality of recesses free of a semiconductor material.