Abstract:
In an embodiment an arrangement includes a plurality of semiconductor chips arranged on a carrier, wherein the carrier is a growth substrate or an auxiliary carrier, wherein the semiconductor chips are arranged at grid points of a grid, and wherein the grid is a hexagonal grid deformed by a deformation factor along at least one of a plurality of axes of the grid and has a shearing along at least one of the plurality of axes of the grid.
Abstract:
An electrical contact structure (10) for a semiconductor component (100) is specified, comprising a transparent electrically conductive contact layer (1), on which a first metallic contact layer (2) is applied, a second metallic contact layer (3), which completely covers the first metallic contact layer (2), and a separating layer (4), which is arranged between the transparent electrically conductive contact layer (1) and the second metallic contact layer (3) and which separates the second metallic contact layer (3) from the transparent electrically conductive contact layer (1).Furthermore, a semiconductor component (100) comprising a contact structure (10) is specified.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μ.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
An optoelectronic semiconductor chip has a semiconductor body and a substrate on which the semiconductor body is disposed. The semiconductor body has an active region disposed between a first semiconductor layer of a first conductor type and a second semiconductor layer of a second conductor type. The first semiconductor layer is disposed on the side of the active region facing the substrate. The first semiconductor layer is electrically conductively connected to a first termination layer that is disposed between the substrate and the semiconductor body. An encapsulation layer is disposed between the first termination layer and the substrate and, in plan view of the semiconductor chip, projects at least in some regions over a side face which delimits the semiconductor body.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor body with an active region provided for generating electromagnetic radiation, a first mirror layer provided for reflecting the electromagnetic radiation, a first encapsulation layer formed with an electrically insulating material, and a carrier provided for mechanically supporting the first encapsulation layer, the first mirror layer and the semiconductor body. The first mirror layer is arranged between the carrier and the semiconductor body. The first encapsulation layer is arranged between the carrier and the first mirror layer. The first encapsulation layer is an ALD layer.
Abstract:
An optoelectronic semiconductor chip has a semiconductor body and a substrate on which the semiconductor body is disposed. The semiconductor body has an active region disposed between a first semiconductor layer of a first conductor type and a second semiconductor layer of a second conductor type. The first semiconductor layer is disposed on the side of the active region facing the substrate. The first semiconductor layer is electrically conductively connected to a first termination layer that is disposed between the substrate and the semiconductor body. An encapsulation layer is disposed between the first termination layer and the substrate and, in plan view of the semiconductor chip, projects at least in some regions over a side face which delimits the semiconductor body.
Abstract:
An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a semiconductor body of semiconductor material, a p-contact layer and an n-contact layer. The semiconductor body includes an active layer intended for generating radiation. The semiconductor body includes a p-side and an n-side, between which the active layer is arranged. The p-contact layer is intended for electrical contacting the p-side. The n-contact layer is intended for electrical contacting the n-side 1b. The n-contact layer contains a TCO layer and a mirror layer, the TCO-layer being arranged between the n-side of the semiconductor body and the mirror layer.
Abstract:
An optoelectronic semi-conductor chip is disclosed in which an encapsulation layer, which is an ALD layer, completely covers a first mirror layer on the side thereof facing away from a p-conductive region, and is arranged to be in direct contact with said first mirror layer in some sections.
Abstract:
An optoelectronic semiconductor chip has a semiconductor body and a substrate on which the semiconductor body is disposed. The semiconductor body has an active region disposed between a first semiconductor layer of a first conductor type and a second semiconductor layer of a second conductor type. The first semiconductor layer is disposed on the side of the active region facing the substrate. The first semiconductor layer is electrically conductively connected to a first termination layer that is disposed between the substrate and the semiconductor body. An encapsulation layer is disposed between the first termination layer and the substrate and, in plan view of the semiconductor chip, projects at least in some regions over a side face which delimits the semiconductor body.