摘要:
An FeRAM comprising includes a ferroelectric material sandwiched between a top electrode and a bottom electrode. A V0-contact provides an electrical connection with an underlying CS-contact. The V0-contact is aligned using the bottom electrode. A liner layer covers a sidewall of the bottom electrode and provides a stop to an etch a hole forming the V0-contact. A method is utilized to form a V0-contact in an FeRAM comprising. An Fe capacitor of the FeRAM is encapsulated, a bottom electrode is etched, a liner layer is deposited covering a sidewall of the bottom electrode, and a hole is etched for the V0-contact until the etching is stopped by the liner layer.
摘要:
A process for the fabrication of a ferroelectric capacitor comprising depositing a layer of Ti 5 over an insulating layer 3 of Al2O3, and oxidising the Ti layer to form a TiO2 layer 7. Subsequently, a layer of PZT 9 is formed over the TiO2 layer 7. The PZT layer 9 is subjected to an annealing step in which, due to the presence of the TiO2 layer 7 it crystallises to form a layer 11 with a high degree of (111)-texture.
摘要:
A ferroelectric capacitor is fabricated using a noble metal hardmask. A hardmask is deposited on a top electrode of a capacitor stack comprising a ferroelectric layer sandwiched between the top electrode and a bottom electrode. The top electrode is patterned according to the pattern of the hardmask by etching at a first temperature. The top electrode serves as the noble metal hardmask and the ferroelectric layer is patterned according to the pattern of the top electrode at a second temperature lower than the first temperature, resulting in the top electrode having sidewalls beveled relative to a top surface of the top electrode etching. The bottom electrode is etched at a third temperature to form the capacitor.
摘要:
A multi-layer barrier for a ferroelectric capacitor includes an outdiffusion barrier layer permeable to both hydrogen and oxygen. The outdiffusion barrier layer covers the ferroelectric of the capacitor. Oxygen passes through the outdiffusion barrier layer into the ferroelectric during an oxygen anneal in order to repair damage to the ferroelectric caused during etching. The outdiffusion barrier layer reduces the decomposition of the ferroelectric by blocking molecules leaving the ferroelectric during the oxygen anneal. The multi-layer barrier also includes a hydrogen barrier layer deposited on the outdiffusion barrier layer after repair of the ferroelectric by the oxygen anneal. The hydrogen barrier layer allows the multi-layer barrier to block the passage of hydrogen into the ferroelectric during back-end processes.
摘要:
A ferroelectric capacitor encapsulation method for preventing hydrogen damage to electrodes and ferroelectric material of the capacitor. In general terms, the method for encapsulating a capacitor includes etching a bottom electrode of a capacitor to expose an underlying wafer surface. An undercut is etched between the capacitor and the wafer surface. The undercut is refilled with a barrier layer to reduce the diffusion of hydrogen from the surface of the wafer into the capacitor.
摘要:
A method for producing self-polarized ferroelectric layers, in particular PZT layers, with a rhombohedral crystal structure includes providing a substrate and heating it to a temperature T1. Afterward the layer with a rhombohedral crystal structure is applied to the substrate by means of a sputtering method. This layer includes a Zr-deficient layer with a Curie temperature TC1 and a Zr-abundant layer with a Curie temperature TC2 wherein TC2
摘要:
A novel pyrodetector element is produced by oriented growth, with the aid of buffer layers, above a monocrystalline silicon substrate and thus enables the fabrication of an array of pyrodetectors having read-out and amplifier circuitry integrated on the common substrate. Proposed as the buffer layers are yttrium-stabilized zirconium oxide YSZ or magnesium oxide above an interlayer made of spinel.
摘要:
An FeRAM comprising includes a ferroelectric material sandwiched between a top electrode and a bottom electrode. A V0-contact provides an electrical connection with an underlying CS-contact. The V0-contact is aligned using the bottom electrode. A liner layer covers a sidewall of the bottom electrode and provides a stop to an etch a hole forming the V0-contact. A method is utilized to form a V0-contact in an FeRAM comprising. An Fe capacitor of the FeRAM is encapsulated, a bottom electrode is etched, a liner layer is deposited covering a sidewall of the bottom electrode, and a hole is etched for the V0-contact until the etching is stopped by the liner layer.
摘要:
The invention provides a method for fabricating a memory device having memory cells which are formed on a microstructured driving unit (100), in which method a shaping layer (104) is provided and is patterned in such a manner that vertical trench structures (105) are formed perpendicular to the surface of the driving unit (100). Deposition of a seed layer (106) on side walls (105a) of the trench structures (105) allows a crystallization agent (107) which has filled the trench structures (105), during crystallization, to have grain boundaries perpendicular to electrode surfaces that are to be formed. This provides memory cells based on vertical ferroelectric capacitors in a chain FeRAM structure.
摘要:
Ferrocapacitors having a vertical structure are formed by a process in which a ferroelectric layer is deposited over an insulator. In a first etching stage, the ferroelectric material is etched to form openings in it, leaving the insulating layer substantially intact. Then a conductive layer is deposited into the openings formed in the ferroelectric layer, forming electrodes on the sides of the openings. Further etching is performed to form gaps in the Al2O3 layer, for making connections to conductive elements beneath it. Thus, by the time the second etching step is performed; there are already electrodes overlying the sides of the ferroelectric material, without insulating fences in between.
摘要翻译:具有垂直结构的铁电体通过在绝缘体上沉积铁电体层的工艺形成。 在第一蚀刻阶段中,铁电材料被蚀刻以在其中形成开口,从而使绝缘层基本上完好无损。 然后,将导电层沉积到形成在铁电层中的开口中,在开口的侧面形成电极。 执行进一步蚀刻以在Al 2 O 3层中形成间隙,以便连接到其下方的导电元件。 因此,在进行第二蚀刻步骤的时候, 已经有电极覆盖在铁电材料的两侧,其间没有绝缘栅栏。