Abstract:
An aqueous composition comprising a mineral acid, a fixing agent and water present in an amount sufficient to dissolve the mineral acid and the fixing agent. The fixing agent comprises at least one of an amine and/or an amide containing compound having a dipole moment of at least 3 when in the aqueous composition.
Abstract:
Methods for treating subterranean wells in which the producing formation is a carbonate comprise preparing a treatment fluid comprising either: (a) an aqueous solution of a multivalent-cation reacting polymer; (b) a solution comprising a fatty acid and an ethanolamine; (c) an aqueous acidic solution of one or more compounds whose calcium salts are insoluble; or (d) an aqueous solution comprising urea or alkane derivatives thereof or both and polyvinylpyrrolidone (PVP). The treatment fluid is placed in the well such that the solution contacts the carbonate formation at a pressure lower than the fracturing pressure. The treatment fluid is allowed to react with the carbonate formation, thereby depositing a film onto the formation surface or part of the formation surface. Then an acid solution is placed in the well such that the acid contacts the carbonate formation at a pressure lower than the fracturing pressure.
Abstract:
A method of forming a wellbore fluid, the method including introducing a hydratable polymer and introducing a crosslinker comprised of at least a silica material, the crosslinker having a dimension of from about 5 nm to about 100 nm.
Abstract:
Oilfield treatment compositions contain water, hydrochloric acid and urea. The urea and water may be present at a urea/water weight ratio between 0.8 and 12.0, and the hydrochloric acid and urea may be present at a urea/hydrochloric acid molar ratio between 0.1 and 0.5. The compositions are present as one liquid phase. The volumes of the compositions are substantially higher than those of the water volumes; consequently, the amount of water necessary to perform various well-service operations is lower.
Abstract:
A method includes providing an oilfield treatment fluid including an aqueous HCl solution having greater than 15% HCl by weight, and a fixing agent (FA) in a molar ratio of FA:HCl of between 0.5 and 2.5 inclusive. The FA is urea and/or a urea derivative. The oilfield treatment fluid further includes a viscosifying agent that is not a plant-based polysaccharide gum. The method further includes providing the oilfield treatment fluid to a high pressure pump, and operating the high pressure pump to treat a formation fluidly coupled to a wellbore.
Abstract:
A process for determining a content of hydrogen in a fluid medium includes contacting the fluid medium with a sensor. The sensor has a housing enclosing a chamber containing an ionic liquid electrolyte, a window which is permeable to hydrogen and positioned in an opening in the housing, and electrodes in contact with the ionic liquid electrolyte in the chamber. Hydrogen is allowed to pass through the window from the fluid medium into the electrolyte and the sensor is heated. Temperature and pressure of the fluid medium is determined and electrical potential is applied to the electrodes. The method also includes measuring current flow. The sensor can be used to observe hydrogen concentration by voltammetry. The method and sensor may be used for measuring downhole hydrogen content, monitoring fiber-optic cables for damage by hydrogen, corrosion monitoring, and in small-scale process plants where hydrogen is part of a gas stream.
Abstract:
A process for determining a content of hydrogen in a fluid medium includes contacting the fluid medium with a sensor. The sensor has a housing enclosing a chamber containing an ionic liquid electrolyte, a window which is permeable to hydrogen and positioned in an opening in the housing, and electrodes in contact with the ionic liquid electrolyte in the chamber. Hydrogen is allowed to pass through the window from the fluid medium into the electrolyte and the sensor is heated. Temperature and pressure of the fluid medium is determined and electrical potential is applied to the electrodes. The method also includes measuring current flow. The sensor can be used to observe hydrogen concentration by voltammetry. The method and sensor may be used for measuring downhole hydrogen content, monitoring fiber-optic cables for damage by hydrogen, corrosion monitoring, and in small-scale process plants where hydrogen is part of a gas stream.
Abstract:
The present invention, in one set of embodiments, provides methods and systems for integrating conducting diamond electrodes into a high power acoustic resonator. More specifically, but not by way of limitation, in certain embodiments of the present invention, diamond electrodes may be integrated into a high power acoustic resonator to provide a robust sensing device that may provide for acoustic cleaning of the electrodes and increasing the rate of mass transport to the diamond electrodes. The diamond electrodes may be used as working, reference or counter electrodes or a combination of two or more of such electrodes. In certain aspects, the high power acoustic resonator may include an acoustic horn for focusing acoustic energy and the diamond electrodes may be coupled with the acoustic horn.
Abstract:
A sensor for monitoring CO2 in a fluid regardless of the phase properties of the fluid, i.e., regardless of whether the fluid contacting the window is a liquid water-based phase, a liquid oil-based phase, a mixture of liquid water and liquid oil-based phases, or a gas phase. The sensor includes an internal reflection window for contacting with the fluid. A mid-infrared light source directs a beam of mid-infrared radiation into the window and the beam is internal reflected at an interface between the window and the fluid. The reflected beam is passed through three narrow bandpass filters which preferentially transmit mid-infrared radiation over bands of wavelengths corresponding to absorbance peaks of water, oil and CO2. The amount of CO2 is determined from the intensities of the mid-infrared radiation passing through the three filters
Abstract:
An aqueous solution includes HCl present in an amount exceeding 37% by weight. The solution further includes a fixing agent that is urea and/or a urea derivative. The fixing agent is present in the solution in a molar ratio of between 0.25 and 2.0 of fixing agent to HCl, inclusive.