Abstract:
A composite piezoelectric coating (CPC) method includes entraining a powder in a first carrier gas stream; heating a second carrier gas stream to a predetermined temperature; combining the first carrier gas stream and second carrier gas stream into a combined carrier gas stream; ejecting the combined carrier gas stream at a target at a predetermined velocity, and consolidating the powder on the target by impact of the ejected combined carrier gas stream with the target.
Abstract:
An element is deployed within tubing extending to a downhole tool. The downhole tool includes a hydraulic tool and a valve coupled between the conveyance string and the hydraulic tool. The valve includes a valve seat having a passage directing the fluid from the conveyance string to the hydraulic tool. Deploying the element includes landing the element on the valve seat such that the element substantially obstructs flow of the fluid through the valve seat passage. The valve is opened to direct the flow of the fluid around the hydraulic tool, wherein opening the valve utilizes pressure generated in response to the element obstructing the flow of the fluid through the valve seat passage. At least a portion of at least one of the element and the valve seat is then degraded by an amount sufficient to permit the element to pass through the valve seat passage.
Abstract:
An oilfield tool can include a composite structure that includes a reactive shape-memory alloy element disposed at least in part in a filler material.
Abstract:
A degradable composition including magnesium-based materials doped with metals, metalloids, and/or compounds, where the composition has a hardness in excess of 80 BHN, and methods of using the same (for example, as a constituent of a treatment fluid of a subterranean formation) are described. The degradable composition may be a shaped composition that degrades in environments typically encountered downhole, such as oilfield environments/conditions and/or fluids. Compositions including magnesium-based materials and various manufacturing processes to produce a composition including the magnesium-based materials in a desired shape are also described.
Abstract:
A shaped charge includes a charge case; a liner; an explosive retained between the charge case and the liner; and a primer core disposed in a hole in the charge case and in contact with the explosive, wherein at least one of the case, the liner, the primer core, and the explosive comprising a material soluble in a selected fluid. A perforation system includes a perforation gun, comprising a gun housing that includes a safety valve or a firing valve, wherein the safety valve or the firing valve comprises a material soluble in a selected fluid.
Abstract:
Embodiments of the present technology may include a method of improving tribological and corrosion properties of an oilfield tubular for conveying hydrocarbons. The method may include depositing a first layer comprising aluminum over a substrate. The substrate may include a ferrous alloy. The method may also include immersing the substrate and the first layer in an alkaline electrolytic liquid bath. The method may further include oxidizing a first portion of the first layer by micro arc oxidation to form a second layer over a second portion of the first layer. The second layer may include aluminum oxide. The oilfield tubular may include the substrate, the first layer, and the second layer.
Abstract:
A method can include producing stock material via equal-channel angular pressing where the stock material includes an alloy that includes an average grain size less than approximately 500 nanometers and machining the stock material into at least one part of borehole tool.
Abstract:
A pressure disintegrable device includes a first volume that further includes a first portion and a second portion. The first portion transmits, to the second portion, pressure applied to the first volume. The melting temperature of the second portion, in response to the transmitted pressure, decreases as the transmitted pressure increases beyond a predetermined pressure. The pressure disintegrable device may also include a layer on the first volume that creates a seal between the first volume and an external structure
Abstract:
Compositions, apparatus incorporating a composition, and methods of use are described, one composition embodiment consisting essentially of one or more reactive metals in major proportion, and one or more alloying elements in minor proportion, with the provisos that the composition is high-strength, controllably reactive, and degradable under defined conditions. Compositions of the invention may exist in a variety of morphologies, including a reactive metal or degradable alloy processed into an alloy of crystalline, amorphous or mixed structure that may constitute the matrix of other composition, for instance a composite. Methods of using apparatus comprising a composition, particularly in oilfield operations are also described (e.g. flow and displacement control, sensors, actuators). This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A downhole device with compressive layer at the surface thereof. Such devices may be particularly well suited for survivability in the face of potentially long term exposure to a downhole environment. Techniques for forming protective compressive layers at the surfaces of such devices may include positioning devices within a chamber for bombardment by high frequency particles. As a manner of enhancing the compressive layer thickness and effectiveness, low temperature conditions may be applied to the device during the high frequency treatment.