Abstract:
The light-emitting apparatus comprising thin film transistors and light emitting elements, comprises; a second inorganic insulation layer on a gate electrode, a first organic insulation layer on the second inorganic insulation layer, a third inorganic insulation layer on the first organic insulation layer, an anode on the third inorganic insulation layer, a second organic insulation layer overlapping with the end of the anode and having an inclination angle of 35 to 45 degrees, a fourth inorganic insulation layer on the upper and side surfaces of the second organic insulation layer and having an opening over the anode, an organic compound layer in contact with the anode and the fourth inorganic insulation layer and containing light-emitting material, and a cathode in contact with the organic compound layer, wherein the third and the fourth inorganic insulation layers comprise silicon nitride or aluminum nitride.
Abstract:
An electrode which can have an improved performance such as higher discharge capacity and in which deterioration due to peeling of an active material layer or the like is difficult to occur are provided. The electrode includes an active material layer including a first protrusion, a second protrusion and a continuous active material film, a metal oxide layer, and a continuous mixed layer. The first protrusion, the second protrusion and the continuous active material film includes silicon. The metal oxide layer includes oxygen and a metal element which is capable of forming silicide by reacting with silicon. The continuous mixed layer includes silicon and the metal element.
Abstract:
It is an object of the present invention to provide a semiconductor display device having an interlayer insulating film which can obtain planarity of a surface while controlling film formation time, can control treatment time of heating treatment with an object of removing moisture, and can prevent moisture in the interlayer insulating film from being discharged to a film or an electrode adjacent to the interlayer insulating film. An inorganic insulating film containing nitrogen, which is less likely to transmit moisture compared with an organic resin, is formed so as to cover a TFT. Next, an organic resin film containing photosensitive acrylic resin is applied to the organic insulting film, and the organic resin film is partially exposed to light to be opened. Thereafter, an inorganic insulting film containing nitrogen, which is less likely to transmit moisture compared with an organic resin, is formed so as to cover the opened organic resin film. Then, in the opening part of the organic resin film, a gate insulating film and the two layer inorganic insulating film containing nitrogen are opened partially by etching to expose an active layer of the TFT.
Abstract:
It is an object of the present invention to provide a technology for manufacturing a highly reliable display device at a low cost with high yield. In the present invention, a spacer is formed over a pixel electrode, thereby protecting the pixel electrode layer from a mask in formation of an electroluminescent layer. In addition, since a layer that includes an organic material that has water permeability is sealed in a display device with a sealing material and the sealing material and the layer that includes the organic material are not in contact, deterioration of a light-emitting element due to a contaminant such as water can be prevented. The sealing material is formed in a portion of a driver circuit region in the display device, and thus, the narrower frame margin of the display device can also be accomplished.
Abstract:
Disclosed is a display device and an electronic apparatus incorporating the display device. The display device includes a transistor and a planarization film over the transistor. The planarization film has an opening where an edge portion is rounded. The display device further includes a first electrode over the planarization film and an organic resin film over the first electrode. The organic resin film also has an opening where an edge portion is rounded. The organic resin film is located in the opening of the planarization film. The first electrode and the transistor are electrically connected to each other through a conductive film. The first electrode is in contact with a top surface of the conductive film. Over the first electrode, a light-emitting member and a second electrode are provided.
Abstract:
An object of the present invention is to provide a semiconductor device having high operation characteristic and reliability. The measures taken are: A pixel capacitor is formed between an electrode comprising anodic capable material over an organic resin film, an anodic oxide film of the electrode and a pixel electrode above. Since the anodic oxide film is anodically oxidized by applied voltage per unit time at 15V/min, there is no wrap around on the electrode, and film peeling can be prevented.
Abstract:
In an active matrix type liquid crystal display device, in which functional circuits such as a shift register circuit and a buffer circuit are incorporated on the same substrate, an optimal TFT structure is provided along with the aperture ratio of a pixel matrix circuit is increased. There is a structure in which an n-channel TFT, with a third impurity region which overlaps a gate electrode, is formed in a buffer circuit, etc., and an n-channel TFT, in which a fourth impurity region which does not overlap the gate electrode, is formed in a pixel matrix circuit. A storage capacitor formed in the pixel matrix circuit is formed by a light shielding film, a dielectric film formed on the light shielding film, and a pixel electrode. Al is especially used in the light shielding film, and the dielectric film is formed anodic oxidation process, using an Al oxide film.
Abstract:
In the case where a material containing an alkaline-earth metal in a cathode, is used, there is a fear of the diffusion of an impurity ion (such as alkaline-earth metal ion) from the EL element to the TFT being generated and causing the variation of characteristics of the TFT. Therefore, as the insulating film provided between TFT and EL element, a film containing a material for not only blocking the diffusion of an impurity ion such as an alkaline-earth metal ion but also aggressively absorbing an impurity ion such as an alkaline-earth metal ion is used.
Abstract:
In a semiconductor device, gate signal lines are spaced apart from each other above a crystalline semiconductor film. Therefore a first protective circuit is not electrically connected when contact holes are opened in an interlayer insulating film. The static electricity generated during dry etching for opening the contact holes moves from the gate signal line, damages a gate insulating film, passes the crystalline semiconductor film, and again damages the gate insulating film before it reaches the gate signal line. As the static electricity generated during the dry etching damages the first protective circuit, the energy of the static electricity is reduced until it loses the capacity of damaging a driving circuit TFT. The driving circuit TFT is thus prevented from suffering electrostatic discharge damage.
Abstract:
An object of the present invention is to provide a semiconductor device having high operation characteristic and reliability. The measures taken are: A pixel capacitor is formed between an electrode comprising anodic capable material over an organic resin film, an anodic oxide film of the electrode and a pixel electrode above. Since the anodic oxide film is anodically oxidized by applied voltage per unit time at 15 V/min, there is no wrap around on the electrode, and film peeling can be prevented.