Abstract:
The present invention relates to a light-emitting diode having enhanced liability. More particularly, a light-emitting diode has enhanced liability in a high-temperature and/or high humidity environment as well as in a room-temperature environment and can have decrease in light-emitting characteristics prevented. In addition, the present invention relates to a light-emitting diode comprising a structure which enables enhancing of light reflection and having enhanced light extraction efficiency by means of light reflection through the structure.
Abstract:
A wearable device such as a watch with a counterfeit detection function that include a display panel configured to display information (e.g., time); a UV LED unit arranged at an edge part of the display panel and configured to provide UV light which reacts with a fluorescent material; and a transparent cover positioned over the display panel so as to focus the UV light.
Abstract:
A method of fabricating a semiconductor device, the method including: forming a first mask pattern including a masking region and an open region on a substrate; forming a sacrificial layer to cover the substrate and the first mask pattern; patterning the sacrificial layer to form a seed layer and to expose the first mask pattern; forming a second mask pattern on the exposed first mask pattern; forming an epitaxial layer on the seed layer and the second mask pattern, and forming a void between the second mask pattern and the epitaxial layer; and separating the substrate from the epitaxial layer.
Abstract:
A wearable device such as a watch with a counterfeit detection function that include a display panel configured to display information (e.g., time); a UV LED unit arranged at an edge part of the display panel and configured to provide UV light which reacts with a fluorescent material; and a transparent cover positioned over the display panel so as to focus the UV light.
Abstract:
A light emitting diode (LED) chip can include: a first pattern region having one or more curved parts; and a second pattern region at least partially surrounding the first pattern region. The first pattern region can include a first conductive type nitride-based semiconductor layer, an active layer, a second conductive type nitride-based semiconductor layer, a top electrode layer, and a top bump layer stacked over a substrate, the second pattern region can include a first conductive type nitride-based semiconductor layer, a bottom electrode layer, and a bottom bump layer stacked over the substrate, and the first pattern region can include one or more protrusion patterns formed in the one or more curved part.
Abstract:
A light emitting diode, including a first type semiconductor layer, an active layer, and a second type semiconductor layer; an ohmic contact layer disposed on the second type semiconductor layer; a first insulating layer disposed on the semiconductor structure and including a first opening overlapping the first type semiconductor layer and a second opening overlapping the ohmic contact layer; a first connection wiring disposed on the first insulating layer, the first connection wiring having a first portion and a second portion; and a second connection wiring disposed on the first insulating layer and spaced apart from the first connection wiring, the second connection wiring electrically connected to the second type semiconductor layer through the second opening. The second connection wiring surrounds at least a portion of the first portion of the first connection wiring in a plan view.
Abstract:
Disclosed herein are a light emitting diode package and a method of manufacturing the same. The light emitting diode package includes: a substrate, a light-emitting layer disposed on a surface of the substrate and including a first type semiconductor layer, an active layer, and a second type semiconductor layer, a first bump disposed on the first type semiconductor layer and a second bump disposed the second type semiconductor layer, a protective layer covering at least the light-emitting layer, and a first bump pad and a second bump pad disposed on the protective layer and connected to the first bump and the second bump, respectively.
Abstract:
An ultraviolet light-emitting device including a substrate, a first conductive type semiconductor layer disposed on the substrate, a mesa disposed on the first conductive type semiconductor layer and including a second conductive type semiconductor layer and an active layer disposed between the semiconductor layers, a first contact electrode contacting the exposed first conductive type semiconductor layer around the mesa, a second contact electrode contacting the second conductive type semiconductor layer on the mesa, a passivation layer covering the first contact electrode, the mesa, and the second contact electrode and having openings disposed above the first and second contact electrodes, and first and second bump electrodes electrically connected to the first and second contact electrodes through the openings of the passivation layer, in which the mesa has depressions in plan view, and the first and second bump electrodes cover the openings and a portion of the passivation layer.
Abstract:
A light emitting diode includes a substrate, a lower semiconductor layer disposed on the substrate, a light emitting unit comprising a first upper semiconductor layer disposed in one region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the first upper semiconductor layer, a second current spreading portion comprising a third upper semiconductor layer disposed in another region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the third upper semiconductor layer, a first electrode disposed on the light emitting cell and electrically connected to the first upper semiconductor layer, and a second electrode separated from the light emitting cell and electrically connected to the lower semiconductor layer.
Abstract:
A light emitting diode includes a substrate, a lower semiconductor layer disposed on the substrate, a light emitting unit comprising a first upper semiconductor layer disposed in one region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the first upper semiconductor layer, a second current spreading portion comprising a third upper semiconductor layer disposed in another region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the third upper semiconductor layer, a first electrode disposed on the light emitting cell and electrically connected to the first upper semiconductor layer, and a second electrode separated from the light emitting cell and electrically connected to the lower semiconductor layer.